

1

First Edition
Hashicorp Vault

for beginner
By Intekhab Rizvi

2

I dedicated this book to my master of time (a.t.f.s) and his mother (s.a)
– Without them, I am nothing.

3

About Book

 If you’ve ever felt like Hashicorp Vault is powerful but... kinda
intimidating - you’re not alone. This book is here to fix that.

We’ll walk you through Hashicorp Vault step by step, starting from
scratch. No assumptions. No jargon without explanation. Just clear,
real-world examples that work.

 Whether you're a backend developer, DevOps engineer, or
someone who wants to build more secure systems, this book was
written with you in mind. And no, you don’t need to be a Linux
wizard. We’ll be using Docker throughout, so you're good if you can
run docker compose up.

 Each chapter builds on the last. That means it’s best to go in
order, no skipping ahead. Trust the flow. You’ll go from spinning up
Vault for the first time, all the way to automating secret access in
production-like scenarios.

Along the way, you’ll:

• Understand how Vault works under the hood

• Store and retrieve secrets the right way

• Rotate database credentials on the fly

• Authenticate services using AppRole

• Use Vault Agent to make legacy apps play nice with secrets

• Encrypt/decrypt sensitive data using Vault’s built-in crypto
engine

4

All source code, configuration files, and Docker setups are available
at our companion GitHub repo:

https://github.com/intekhabrizvi/vault-beginner

It’s all there. Tested, copy-pasteable, and ready to go.

Feel free to explore, fork, and ask questions. This is a hands-on
book, and your curiosity is welcome.

So, crack open a terminal, grab a coffee, and build something
secure together.

5

Meet the Author

 Hi, I’m Intekhab Rizvi. I have over 20 years of experience
building large-scale enterprise software platforms.

 Academically, I hold a Master’s degree in Computer
Application. Professionally, I’m certified as a Hashicorp Vault
Associate and Hashicorp Vault Operations Professional, and also
have several AWS credentials, including Certified Solutions Architect
and Security Specialist. You can find the rest of my certifications at
http://intekhab.in

 This book came from a real need for a simple, hands-on
guide. I’ve often found that, while thorough, official documentation
can be overwhelming and hard to follow for beginners. So I wrote
the book I wish I had when I started years back.

 My goal here is simple: make Vault approachable. Make it
click. And if something doesn’t make sense, reach out. I’m more
than happy to help.

 You can email me anytime at me@intekhab.in. Yes, I will
check and reply personally.

6

Index
Chapter 1: Introduction to Hashicorp Vault .. 8

Chapter 2: Installing Vault Using Docker ... 11

Chapter 3: Vault Initialization and Logging In 16

Chapter 4: Understanding Shamir’s Secret Sharing and Rekeying

Vault ... 21

Chapter 5: Storing Your First Secret ... 27

Chapter 6: KV v2 Versioned Secrets .. 33

Chapter 7: Secrets Engine and Paths ... 42

Chapter 8: Authentication Methods – Giving Others Access 46

Chapter 9: Understanding Vault Policies ... 53

Chapter 10: Policies in action .. 58

Chapter 11: Accessing Vault using browser-based UI 67

Chapter 12: Understanding Dynamic Secrets 76

Chapter 13: Dynamic Secrets in Action .. 81

Chapter 14: Fine-Tuning and Access Control on Dynamic Secrets ... 92

Chapter 15: Leasing, TTL, and Vault’s Secret Lifecycle 99

Chapter 16: Dynamic Secrets with PostgreSQL 104

Chapter 17: Dynamic Secrets with MongoDB 115

Chapter 18: Getting Started with the Vault API, Your First Step to

Automation ... 124

7

Chapter 19: AppRole Authentication Method, Vault Meets

Automation ... 136

Chapter 20: Vault Agent and Templating, Bridging the Gap for

Legacy Apps .. 148

Chapter 21: Transit Secrets Engine - Encryption as a Service 162

Chapter 22: Understanding Vault Audit Devices 182

Chapter 23: Revoking and Regenerating the Root Token 193

Chapter 24: Production deployment of Hashicorp Vault on Ubuntu

LTS .. 200

Chapter 25: Production Deployment of Hashicorp Vault Using

Docker .. 209

Chapter 26: Production Hardening Guide ... 218

Chapter 27: Creating PGP Keys for Vault Security 225

8

Chapter 1: Introduction to
Hashicorp Vault

Hashicorp Vault is a tool built for a particular but increasingly critical
problem: how do we securely manage secrets in modern software
systems?

As software systems grow more distributed, cloud-based, and
automated, the number of credentials, API keys, tokens, and
passwords we need to manage grows. These secrets often end up
hardcoded in source code, scattered in environment variables, or
shared insecurely across teams. Vault provides a central, secure,
and auditable way to manage and access secrets.

At its core, Vault acts like a digital vault for your sensitive
information. But it’s more than just a storage box with a lock. Vault
is a dynamic secrets manager, meaning it can generate secrets on
the fly, rotate them automatically, and revoke access when they’re
no longer needed. It can integrate with identity systems, enforce
fine-grained access control, and encrypt application data without
storing it.

But don’t worry if all that sounds like a lot right now. That’s
precisely what this book is here for.

What You’ll Learn
This book is a hands-on, practical guide designed to take you from
zero to confident in Hashicorp Vault. We’ll start with the basics,
what Vault is, how to install it locally using Docker, and how to
interact with it. As the chapters progress, we’ll build a strong

9

foundation and then dive into more advanced topics like dynamic
secrets, authentication backends, encryption as a service, and
secure application integration.

Each chapter introduces key concepts in a structured way, followed
by practical examples you can try on your machine. By the end of
the book, you won’t just know what Vault does, you’ll understand
how to apply it in real-world projects.

If you’re a DevOps engineer, a backend developer, or a security-
conscious builder of systems, you’re in the right place. No deep
Linux or command-line knowledge is required; we’ll use Docker to
simplify everything, ensuring Windows, macOS, and Linux users are
equally supported.

Why Vault?
There are other secrets managers: AWS Secrets Manager, Azure Key
Vault, and even Kubernetes Secrets. But Vault stands out for its
flexibility. It’s cloud-agnostic, open source, and built with complex
infrastructure needs in mind. You can run it locally, in a datacenter,
or the cloud. You control where your secrets live and who can access
them.

Vault isn’t just valuable for large-scale enterprise systems. It’s just
as relevant for small teams, hobby projects, or single-node services
that need to manage secrets securely and cleanly.

You’ll also see callouts like this one throughout the book. These are
tips, best practices, or warnings to help you avoid common
mistakes. Please don’t ignore them.

10

A Quick Word on Installation

We’ll be running Vault locally using Docker. That means there’s no
need to install anything directly on your system or interact with raw
binaries or config files unless you want to.

Vault can feel intimidating at first. It introduces a new way of
thinking about secrets, authentication, and access control. But don’t
worry, you’re not alone.

This book is written for real people building real systems. We’ll go
slow when needed, speed up when we can, and always ensure you
understand what’s going on before moving forward.

So take a deep breath. We’ve got you.

Please clone the repository linked below, which contains all the
configurations, commands, and code samples used throughout this
book. Access to this repository will make it easier for you to follow
along with the material.

https://github.com/intekhabrizvi/vault-beginner/

https://github.com/intekhabrizvi/vault-beginner/

11

Chapter 2: Installing Vault Using
Docker

 In this chapter, we’ll launch Hashicorp Vault using Docker in a
way that persists all Vault data even after stopping the container.

 To make this hands-on experience smoother, we’ve already
prepared the Vault configuration file and data directory for you. You
don’t need to write the configuration yourself; follow the steps, and
you’ll be up and running quickly.

Step 1: Clone Pre-bundled Repo
 All the required configuration files, the Vault data directory
structure, and chapter-wise example folders are already organized
for you.

Before you continue, please clone the following GitHub
repository, which contains everything you’ll need as we progress
through the book:

git clone https://github.com/intekhabrizvi/vault-

beginner.git
cd vault-beginner

Step 2: Launching Vault with Persistent
Storage
We’ll run Vault using Docker and ensure it writes to a local folder
(vault-beginner/vault-data/file) so the data survives across
container restarts.

12

The pre-created configuration file is stored at vault-
beginner/vault-data/config/vault.hcl location.

Use the following Docker command to start Vault:

docker run -d --rm \
 -p 8200:8200 \
 -v $(pwd)/vault-data/config:/vault/config \
 -v $(pwd)/vault-data/file:/vault/file \
 -v $(pwd)/vault-data/logs:/vault/logs \
 -v $(pwd):/home/vault/vault-beginner \
 --cap-add=IPC_LOCK \
 --name vault-dev \
 hashicorp/vault:latest server

Note: If you're on Windows, make sure to adjust the "$PWD" path
accordingly to point to the absolute path of the vault-beginner
repo on your machine.

Explanation by Segment

Part Purpose

docker run
This starts a new container instance from the

specified Docker image.

-d
Runs the container in detached mode, meaning it

runs in the background.

--rm

Automatically removes the container when it

stops. This is useful for cleanup. It deletes the

container (not the data) once stopped.

-p 8200:8200

This maps port 8200 on your host to port 8200

inside the container. Vault uses port 8200 for its

HTTP API and UI.

-v $(pwd)/vault- Mounts the Vault config folder from your host into

13

Part Purpose

data/config:/vaul

t/config
the container at /vault/config. This is where

your vault.hcl file lives.

-v $(pwd)/vault-

data/file:/vault/

file

Mounts the data storage folder for Vault’s

persistent backend. This is where Vault saves

secrets, tokens, leases, etc.

-v $(pwd)/vault-

data/logs:/vault/

logs

It mounts a log directory so that Vault's logs can be

persisted on by your host for inspection.

-v

$(pwd):/home/vaul

t/vault-beginner

Mounts the vault-beginner folder we just cloned

inside the vault container. This will help you to

execute the commands quickly.

--cap-

add=IPC_LOCK

Grants the container permission to lock memory

using mlock. This prevents sensitive data from

being swapped to disk. It’s a critical security

practice.

--name vault-dev

Assigns a name to your container, making it easier

to reference later with docker exec, docker

logs, etc.

hashicorp/vault:l

atest

Specifies the image to use. You’re using the latest

official Hashicorp Vault Docker image.

server
Tells Vault to run in server mode (as opposed to

client mode).

Step 3: Attach to the Vault Container
To interact with Vault CLI inside the container:

docker exec -it vault-dev /bin/sh

14

Now you’re inside the Vault container.

Step 4: Set the VAULT_ADDR Environment
Variable
After the container starts, you must set the VAULT_ADDR
environment variable. This environment variable is used by Vault
clients (including the CLI) to point to the correct Vault server
address. To set the VAULT_ADDR variable, run the following
command inside the container.

export VAULT_ADDR=http://localhost:8200

Important Notes
1. Persistence: The data is persisted because of the volume

mounts. The data will survive in the mounted host directories
even if the container is deleted (--rm).

2. Memory Lock: --cap-add=IPC_LOCK enables mlock, but
you must still set disable_mlock = false in your Vault
config (vault.hcl) to allow it fully.

3. Configuration: The config file (vault.hcl) should be placed
in the vault-data/config directory, and must define the
storage backend (e.g., file) and the listener.

4. Accessing Logs: You can view Vault logs from the mounted
folder vault-data/logs or use docker logs vault-dev.

5. Stopping the Container: Since --rm is used, once you stop
the container, it will be deleted. But the data will remain on
your host via the vault-data/file folder.

15

What’s Next?
In the next chapter, we’ll walk through how to initialize and unseal
Vault from inside the container. We’ll also explain the purpose of
the unseal keys and root token and how Vault handles encryption
from the moment you start using it.

Let’s move forward!

16

Chapter 3: Vault Initialization and
Logging In

Now that Vault is installed and running locally using Docker, it’s
time to bring it to life.

In this chapter, we’ll introduce the vault operator init and
vault login commands. You’ll learn what it means to initialize
Vault, how to unseal it, and how to authenticate. We’ll also briefly
touch on Vault tokens, what they are, and why they matter without
diving too deep (we’ll explore them thoroughly in a later chapter).

Wait, Why Does Vault Need to Be
“Initialized”?
When Vault starts up for the first time, it’s in a sealed state, thinking
of it as a locked box with a self-destructive mechanism inside.
Before anyone can use it, Vault must be initialized and unsealed.

Why? Because Vault doesn’t want to take chances. It protects your
secrets with an encryption key that doesn’t exist until you run
vault operator init. That command generates the
cryptographic foundation Vault needs to operate, including the keys
to unlock its secrets.

Once initialized, you can authenticate using a token, Vault’s way of
saying, “Yes, you have permission.”

Before you begin: Ensure you have completed all steps in Chapter
2 and are still connected to the Vault container. If not, please revisit
and execute the setup commands from that chapter first.

17

All commands in this section must be run from inside the Vault
container shell.

Step 1: Initialize Vault
Run this command in your terminal:

vault operator init

You’ll see output that looks like this:

Don’t forget: Make sure to save the unseal keys and root token
securely—you’ll need them throughout this book. If you lose them,
you must delete the vault-data folder and reinitialize Vault from
scratch.

Vault uses a mechanism called Shamir’s Secret Sharing to
generate multiple unseal keys. These keys are required to “unlock”

18

the vault. By default, Vault requires at least 3 of the 5 unseal keys
to unseal it.

Yes, it’s paranoid in a good way.

Step 2: Unsealing the Vault
To unseal Vault, run this command three times using three of the
unseal keys:

vault operator unseal

Paste one key at a time when prompted.

After the third key, Vault becomes unsealed and ready for use.

Step 3: Logging In
Once Vault is initialised and unsealed, you need to authenticate.

19

Use the root token generated during initialisation:

vault login hvs.abc123xyz456

(Replace s.abc123xyz456 with the root token you received when
performing the vault operator init.)

If everything goes well, you’ll see:

You’re in.

A Quick Word About Tokens
When you log in to Vault, you get a token, a digital passport that
proves who you are and what you're allowed to do.

Tokens are central to how Vault handles identity and access. There
are root tokens (all-access), regular tokens (limited access),
renewable tokens (for long-lived services), and more. You can

20

revoke, rotate, and restrict them, and yes, we’ll dive into all of that in
a dedicated chapter later.

But for now, remember this:

No token, no entry.

Recap
• You initialized Vault using vault operator init.

• You unsealed it with three out of five unseal keys.

• You authenticated using the root token.

• And you got a first glimpse into Vault’s token-based access
control.

From here on, you’re ready to start interacting with Vault, storing
secrets, configuring access, and building secure workflows.

21

Chapter 4: Understanding
Shamir’s Secret Sharing and
Rekeying Vault

In the last chapter, we briefly touched on Vault’s initialization
process and the concept of unseal keys. Now it’s time to dig deeper.

This chapter explains the role of Shamir’s Secret Sharing, the
meaning and significance of key shares, how to rekey the Vault, and
what happens when things go wrong, like losing too many key
shares. We’ll also address a common concern: Does the person
initializing Vault see all the keys? (Spoiler: there’s a way to avoid
that.)

What is Shamir’s Secret Sharing?
Hashicorp Vault uses a cryptographic algorithm called Shamir’s
Secret Sharing to protect its master key. Instead of storing one
master key (a single point of failure), Shamir’s algorithm splits the
key into multiple pieces, known as key shares.

These shares are distributed among multiple trusted parties. To
reconstruct the master key (and unseal the Vault), only a subset of
those shares is needed, not all of them.

By default:

• Vault creates five key shares

• The threshold to unseal is set to 3 shares

22

This means any 3 of the five key holders can come together to
unseal the Vault. This is both secure and practical, and it avoids a
single person becoming a bottleneck while ensuring no one can
unseal the Vault alone.

Why Use Key Shares at All?
Because trust is not binary.

With Shamir’s Secret Sharing, no single person holds all the power.
It also lets you distribute trust across a team, organization, or
countries if needed.

This becomes especially valuable in enterprise or compliance-driven
environments where:

• Shared custody is a regulatory requirement

• Insider threat mitigation is essential

• Multi-party approvals are part of the access policy

But Wait, Doesn’t the Person Who Initializes
the Vault See All the Keys?
Yes, when you run vault operator init, all the unseal keys are printed
to your screen by default. Whoever runs the command sees every
key. This is risky. You’re relying on that one person to distribute the
keys securely, not screenshot them, and not keep copies.

That’s where PGP encryption comes in.

23

Using PGP to Distribute Key Shares Securely
You can prevent the initializer from seeing the raw unseal keys by
providing PGP public keys during initialization.

Vault will:

• Encrypt each key share with a corresponding PGP key

• Return only the encrypted blobs

• So only the intended key holders who have the matching
private keys can decrypt and access their unseal key

Here’s how:

vault operator init \
 -key-shares=5 \
 -key-threshold=3 \
 -pgp-

keys="pgp1.asc,pgp2.asc,pgp3.asc,pgp4.asc,pgp5.asc"

Each file (pgp1.asc, etc.) should contain the ASCII-armoured
public key for one of your trusted operators.

The creation of a GPG public key is covered in detail in Chapter 27.

The output will look something like this:

Unseal Key 1:

vault::pgp::TUVTVEVSU0VDUkVUV0lUSFZBVUxURk9STk8x...
Unseal Key 2:

vault::pgp::QUJDREVGR0hJSktMTU5PUFFSU1RVVldY...

Only the intended person can decrypt their share using their
private PGP key, like this:

24

echo "<key>" | base64 -d | gpg -d

This makes the initialization process zero-trust for the initializer.
They never see the actual unsealed keys.

 Customising Key Shares and Thresholds
You can customize the number of shares and the unseal threshold
with or without PGP. Example:

vault operator init -key-shares=7 -key-threshold=4

You can choose any numbers that fit your organization’s security
needs, as long as:

• threshold <= shares

• You have a secure distribution plan for the shares

What If You Lose Key Shares?
This is where it gets serious.

You are permanently locked out of the Vault if you lose more key
shares than your threshold allows.
There is no backdoor, no “reset,” no way to recover the Vault
without enough shares.

For example: with -key-shares=5 -key-threshold=3, you're
done if you lose three or more keys.

That’s why it's essential to:

• Back up unseal keys securely

• Store them in encrypted vaults, HSMs, or offline media

25

• Use PGP encryption during init to avoid human errors

Rekeying Vault: Why and How
You may need to rotate unseal keys:

• A key holder left the team

• You suspect a compromise

• You’re rotating keys on a compliance schedule

To rotate (rekey) unseal keys:

#init the rekey process
vault operator rekey -init -key-shares=5 -key-

threshold=3

vault operator rekey

Then, provide the current unseal keys (up to threshold) to complete
the process.

Vault will generate new keys, and the old ones will stop working.
Distribute the new ones securely.

You can also rekey using PGP the same way you initialized:

vault operator rekey -init \
 -key-shares=5 \
 -key-threshold=3 \
 -pgp-

keys="pgp1.asc,pgp2.asc,pgp3.asc,pgp4.asc,pgp5.asc"

When Rekeying Won’t Work
• Too many keys lost: Can’t gather the threshold = no rekey.

26

• Vault is sealed and can’t be unsealed: No rekey until the
Vault is unsealed.

• Dev Mode: Rekeying is disabled and irrelevant in dev mode.

What If You Lose the Minimum Threshold?
Vault will become inaccessible forever.

There is no recovery path if you lose more keys than the threshold
allows. No master override. No root access. Vault isn’t joking around
it prioritizes security and confidentiality over convenience.

Recap
• Shamir’s Secret Sharing splits the master key into safe,

distributed key shares.

• Use -key-shares and -key-threshold to customise how
many are created and required.

• Losing more than the threshold of unseal keys is
unrecoverable.

• Use PGP encryption during initialization to prevent the
initializer from seeing unseal keys.

• Rekeying lets you rotate unseal keys securely if you still have
enough to meet the threshold.

Vault’s security model is airtight, but you must handle the keys
responsibly. In the next chapter, we’ll dive into Vault’s first real use
case: storing secrets using the Key-Value secrets engine.

27

Chapter 5: Storing Your First
Secret

Up until now, we’ve danced around Vault. You installed it, initialized
it, logged in… but what good is a vault if it doesn’t store secrets?

In this chapter, you’ll:

• Log in using the CLI

• Enable the KV (Key-Value) secrets engine

• Store your first secret

• Retrieve it

• Delete it

Now, let’s attach to the Vault container using the following
command:

docker exec -it vault-dev /bin/sh

Step 1: Logging In to Vault
After initializing Vault, you receive a root token, a powerful key that
gives full access.

Use it to log in via CLI:

vault login <your-root-token>

If successful, Vault says:

28

Success! You are now authenticated.

From now on, any Vault commands you run will use this
authenticated session.

Step 2: Enabling the KV Secrets Engine
Vault doesn’t store secrets by default. You must first enable a
secrets engine, a logical backend for secret storage.

We’ll enable the basic KV (Key-Value) engine. This version is KV v1,
a simple key-value store with no versioning.

vault secrets enable -path=secret kv

This mounts the secrets engine at the path secret/. That means
any secrets stored under this engine will live under the prefix
secret/.

What’s a “path”?
Vault organizes secrets into paths, think of them like folders.
secret/myapp is one such path. In a later chapter, we’ll dive
deeper into path structures and access control.
What about KV v2?
KV v2 is the versioned version of this engine. You can store multiple
versions of secrets, roll them back, and see edit history. We’ll
explore KV v2 in a later chapter. For now, we’re sticking to the
simpler KV v1 for clarity.

Step 3: Storing a Secret (KV Put)
Let’s store a simple username and password.

29

vault kv put secret/myapp username=admin

password="S3cr3t!"

This creates a secret at the path secret/myapp with two fields:
username and password.

Expected output:

Success! Data written to: secret/myapp

No versioning here if you overwrite the secret, the old one is gone.

Advanced Options:
Vault supports multiple flags like -mount, -cas, or -format, and
you can also structure your values using JSON. We’ll explore these
options later when we go deeper into customization.

Step 4: Retrieving a Secret (KV Get)
To read the secret back:

vault kv get secret/myapp

You’ll see:

====== Data ======
Key Value
--- -----
password S3cr3t!
username admin

You can also fetch raw JSON, and the output will be like below

30

vault kv get -format=json secret/myapp

Step 5: Deleting a Secret (KV Delete)
To permanently delete a secret from KV v1:

vault kv delete secret/myapp

There’s no trash bin or versioning here; once it’s gone, it’s gone.

31

In KV v2, delete only marks secrets as deleted, they can still be
recovered. However, in KV v1, deletion is permanent. Choose
carefully!

Let’s write the data back into Vault, as we’ll need it in the upcoming
chapter:

vault kv put secret/myapp username=admin

password="S3cr3t!"

This ensures that the necessary secrets are available when we
reference them later.

Recap
You just completed your first real Vault workflow:

• Logged in using the root token

32

• Enabled the KV (v1) secrets engine

• Stored a key-value pair

• Retrieved it

• Deleted it

You also got your first taste of Vault paths and engines, two
fundamental concepts we’ll build on in upcoming chapters.

33

Chapter 6: KV v2 Versioned
Secrets

In our earlier chapters, we used the KV (Key-Value) secrets engine in
its basic form, KV v1. Simple. Fast. No versioning. You put a secret
in, you get it out. That’s it.

But what if you accidentally overwrite a secret? Or delete something
important? Or want to know what changed and when?

That’s where KV v2 comes in.

What is KV v2?
KV v2 is a versioned key-value store. It gives you:

• Version history for secrets

• Soft deletes (you can undelete!)

• Metadata tracking (who, when, what)

• And a little peace of mind

It’s the “undo” button for your secrets.

Let’s attach to the Vault container and log in using the root token.

Enabling KV v2
Just like KV v1, you enable KV v2 at a path. The difference? You need
to tell Vault to use the versioned option explicitly.

vault secrets enable -path=kvv2 kv-v2

34

This creates a new mount point at kvv2/ using the KV v2 engine.

Note: You can call this path anything (like secrets/, apps/, etc.).
Just remember: the path is part of the API. More on paths in the
next section.

Putting Secrets into KV v2
Unlike KV v1, writing to KV v2 requires a slightly different path
/data/ is required.

vault kv put kvv2/project1/api key=supersecret123

This:

• Stores a secret at the logical path kvv2/project1/api

• Automatically saves it as version 1

If you do it again with new data:

vault kv put kvv2/project1/api key=newvalue456

35

Boom, that’s version 2. Vault keeps the old one in the background.

Reading a Specific Version
By default, Vault gives you the latest version:

vault kv get kvv2/project1/api

36

Want to see version 1?

vault kv get -version=1 kvv2/project1/api

You can even inspect metadata:

vault kv metadata get kvv2/project1/api

This shows all versions, deletion flags, and timestamps.

37

Deleting and Undeleting
Want to delete a version?

vault kv delete kvv2/project1/api

Note: This is a soft delete; it only marks the latest version as
deleted.

38

Or maybe you panicked and want to bring a deleted version back?

vault kv undelete -versions=2 kvv2/project1/api

Yes, Vault lets you undo a delete. Just like Ctrl+z.

To wipe it: That deletes version 2 permanently.

vault kv destroy -versions=2 kvv2/project1/api

39

Let’s write the data back into Vault, as we’ll need it in the upcoming
chapter:

vault kv put kvv2/project1/api key=newvalue456

This ensures that the necessary secrets are available when we
reference them later.

40

What’s This “/data/” and “/metadata/”
Stuff?
With KV v2, there are two APIs under the hood:

• /data/: For your actual secrets

• /metadata/: For managing and inspecting versions

This means you need to know which part you're talking to when
using the CLI or API.

You can think of it like this:

Path Segment What it Does

/data/ Put/get secrets (actual key-values)

/metadata/ List versions, delete metadata, etc.

We’ll unpack the concept of paths more in the next chapter. They’re
foundational to how Vault works.

Quick Comparison: KV v1 vs KV v2

Feature KV v1 KV v2

Versioning No Yes

Undelete No Yes

Metadata tracking No Yes

Extra path logic Simple Has /data/, /metadata/

41

What’s Next?
Now that you understand KV v2 and have your secrets version-
controlled like a pro, it’s time to dig deeper into Vault’s architecture.

In the next chapter, we’ll explore how Vault organizes and manages
data internally, and why that structure matters more than you
might think.

42

Chapter 7: Secrets Engine and
Paths

 Vault isn’t just a tool for storing secrets. It’s a flexible
platform that supports multiple types of secrets from passwords
and tokens to cloud credentials, certificates, encryption keys, and
even dynamic access to infrastructure.

At the center of all this magic are Secrets Engines and Paths.

Let’s unpack both.

Secrets Engines: Not Just One Vault, But
Many
A Secrets Engine is a backend plugin responsible for a specific type
of secret.

Some examples:

Engine What it stores or does

kv Stores static key-value secrets

aws Dynamically generates AWS access credentials

database Generates database usernames/passwords on the fly

transit Performs cryptographic operations (sign, encrypt)

pkI Issues and manages TLS certificates

identity Manages entities and groups inside Vault

43

In other words Vault isn’t just one vault. It’s many vaults under one
interface, each specialized for a particular type of secret or
operation.

Think of each secrets engine as a plugin. When you enable one,
you’re telling Vault, “I want to store this kind of data here.”

Enabling Secrets Engines
You enable engines like this:

vault secrets enable -path=mykv kv

This mounts the KV engine at mykv/.

You can have multiple mounts of the same engine, each with
different purposes:

vault secrets enable -path=dev-kv kv
vault secrets enable -path=prod-kv kv

Each engine is isolated secrets under dev-kv/ are completely
separate from prod-kv/.

Paths: The Filesystem of Vault
Secrets live at paths, and paths are how you organize and control
access to data.

For example:

• secret/db/creds might store static credentials

• aws/creds/dev-role might generate dynamic AWS keys

• transit/keys/myapp might contain encryption keys

44

You can structure paths any way you like. Just like folders on a hard
drive.

But paths are more than just location they’re also the foundation
for:

• Access Control (Who can access what)

• Auditing (Who accessed what)

• Policies (Rules applied per path)

We’ll dive into policies soon but remember: Vault security is path-
based.

Secrets Engine Types: A Quick Classification
Vault secrets engines can be broadly grouped:

Category Engines

Static storage kv (v1 and v2)

Dynamic credentials aws, gcp, database, rabbitmq, etc.

Encryption & signing transit, pkI, ssh

Identity & auth identity

Custom / community Third-party plugins

Some engines support dynamic secrets, meaning Vault generates
the secret when you request it and automatically revokes it later.

This is one of Vault’s superpowers, never having to store or rotate
secrets manually.

45

Why Paths and Engines Matter
• Paths define where secrets live, how they’re organized, and

how they’re accessed.

• Secrets Engines define how those secrets behave and what
they’re for.

Understanding this structure helps you:

• Avoid clutter and chaos in large Vault deployments

• Secure your environment with precision

• Build automation around dynamic secret generation

What’s Next?
You’ve now seen the structure beneath Vault, and why it’s so much
more than a key-value store.

In the next chapter, we’ll learn how to define access policies, so
your Vault isn’t a free-for-all.

We’ll write our first policy and assign it to a token. After all, what
good is a vault if anyone can open every drawer?

Let’s lock it down.

46

Chapter 8: Authentication
Methods – Giving Others Access

 Until now, you've been interacting with Vault using the root
token. And that’s fine for learning. But in the real world?

Root tokens are like nuclear launch codes. Powerful, dangerous, and
best kept far, far away from everyday use.

So how do we let others (humans, apps, machines) access Vault,
safely?

Welcome to Auth Methods.

What is an Auth Method?
An Auth Method is how a user or application proves its identity to
Vault.

Vault doesn’t have built-in users. It delegates identity verification to
these pluggable methods?????like LDAP, GitHub, AWS IAM,
Kubernetes, or good old username/password.

Once authenticated, Vault returns a token with policies attached.
That token defines what that entity is allowed to do.

Think of an auth method as the door, and the token as the keycard
that Vault gives you once it knows who you are.

Why Use Auth Methods?
So far, only you, the Vault admin had the root token. But now it’s
time to share the Vault love:

47

• Your team needs access

• Your apps need secrets

• Your CI/CD pipelines need short-lived credentials

But you should never share the root token. Ever.

Auth methods let you:

• Give access without giving away sensitive tokens

• Control who can do what using policies

• Audit, rotate, and revoke access cleanly

Enabling the Userpass Auth Method
Let’s start with the most basic and easy-to-understand method:
userpass.

This is Vault's built-in username/password login system. Great for
quick demos or small teams.

Enable the userpass method:

vault auth enable userpass

You’ll see:

Success! Enabled userpass auth method at: userpass/

Vault just mounted this method at the userpass/ path.

You can mount auth methods at any custom path (like dev-login/
or team-a/). But for now, let’s keep it simple.

48

Create a User
Let’s create a user called Alice. She’ll use a username/password
combo to log in.

vault write auth/userpass/users/alice \
 password="123456" \
 policies="default"

Let’s break down the path:

• auth/ – This tells Vault we’re interacting with an auth
method.

• userpass/ – This is the path of auth method we enabled
earlier.

• users/ – A sub-path used by the userpass plugin to manage
users. It’s fixed and you can’t change it.

• alice – The username we’re creating. You can choose
whatever you want.

So essentially:

Create a new user alice inside the userpass auth method and
assign her a password and policy.

49

What Is the "default" Policy?
When you create a new user and assign "default" as the policy,
you’re giving them very limited capabilities. That’s intentional.

The default policy typically allows users to:

• Authenticate (log in)

• Lookup their own token

• Renew and revoke their own token

But nothing else?????they cannot read or write secrets, manage
engines, or do anything meaningful in your setup.

Vault plays it safe by design. Permissions must be explicitly granted.

Login as Alice
Now, let’s switch roles. You're Alice. Login with the Alice’s username
and password.

vault login -method=userpass username=alice

password=123456

You'll get:

50

This token is Alice’s key to the Vault. Scoped, limited, and short-
lived.

Can Alice Access the Secret?
In the previous chapter, we stored a simple key-value secret at:

secret/myapp

Let’s see if Alice can read it:

vault kv get secret/myapp

Result?

51

Boom. Permission denied.

Alice is authenticated but she’s not authorised.

That’s the Heart of Vault's Security Model
Vault always separates:

• Authentication – Who are you?

• Authorization – What are you allowed to do?

Just because Alice logged in doesn’t mean she can read secrets. For
that, she needs access policies. Which we’ll build in the next
chapter.

Remember
• Auth methods let users log in without using the root token.

• userpass is the easiest to try.

52

• users/ is a special path inside the userpass method for
managing user accounts.

• default policy is minimal, login only.

• Alice can log in but can’t do anything useful yet (by design).

What’s Next?
Now that we’ve got Alice in the system, let’s give her access.

In the next chapters, we’ll define custom policies. The Vault’s way
of saying:

Yes, you may read this secret, but not that one.

Let’s unlock the Vault carefully.

53

Chapter 9: Understanding Vault
Policies

Vault doesn’t care who you are.

It cares what you can do, and that’s defined by policies.

You’ve already seen this in action: Alice couldn't access secrets until
we gave her the right policies. But to truly master Vault, you must
get comfortable writing and understanding these policies.

This chapter is your complete guide.

HCL - Hashicorp Configuration Language

Vault policies are written in HCL, a simple, human-readable
language also used in Terraform. You can also use JSON, but HCL is
more readable and preferred. Here’s a simple HCL policy:

path "kv/*" {
 capabilities = ["read", "list"]
}

You define what path a user can access and what they can do
there.

Anatomy of a Policy Stanza

A single policy stanza looks like this:

path "kv/data/secret" {
 capabilities = ["create", "read", "update"]
}

54

Let’s break that down:

• path – The Vault API path this rule applies to.

• capabilities – What the user is allowed to do at this path.

You can have multiple stanzas in one policy. Each one targets a
specific path.

The Wildcards: * and +

These two symbols help match paths dynamically:

Symbol Meaning

* Wildcard for one level (no slash)

+ Wildcard for multiple levels, including slashes

Example:

path "kv/*" { } # Matches: kv/foo, kv/bar (but

not kv/foo/bar)
path "kv/+/app" { } # Matches: kv/foo/app,

kv/bar/app, kv/baz/app but not kv/foo/bank

Use + when you're dealing with unknown or deep hierarchies.

Capabilities - What Can You Do?

Vault understands these permissions:

Capability Description

create Write a new secret where none exists

update Modify an existing secret

read Read data (like secrets)

delete Delete the data

55

Capability Description

list See what keys exist at a path

sudo Full access, including overriding ACLs

deny Explicitly block access, even if allowed elsewhere

You can combine them like this

capabilities = ["read", "list"]

How Policy Enforcement Works

When a request comes into Vault:

1. Vault checks the identity (token, user, etc.).

2. It looks at all policies attached to that identity.

3. It determines whether the action on that path is allowed.

If any policy allows the action, it proceeds. Unless… An explicit deny
exists, which overrides all allows.

Deny Always Wins

Vault uses default-deny; if a policy doesn’t say something is
allowed, it’s denied. But if you explicitly write deny, it becomes
unskippable.

path "kv/secret/*" {
 capabilities = ["read"]
}
path "kv/secret/*" {
 capabilities = ["deny"]
}

56

Even if a user has permission for kv/secret/*, the deny for
kv/secret/* wins.

This is useful when you want to broadly allow access but block
certain sensitive paths.

Deny in Any Policy Blocks Everything

Here’s the key rule:

If any policy attached to a user includes a deny for a path, access is
denied, even if another policy allows it.

So if you assign dev-policy and secure-policy to a user, and
secure-policy has a deny rule, it takes precedence.

Use deny carefully. It’s a scalpel, not a hammer.

Example Policy: Reader with a Restriction

Allow read/list on all kv paths
path "kv/+" {
 capabilities = ["read", "list"]
}

Deny access to production secrets
path "kv/production/*" {
 capabilities = ["deny"]
}

This allows broad access, except to sensitive areas. Neat and clean.

Summary

• Policies are written in HCL, with stanzas for each path.

57

• You define what actions users can perform using
capabilities.

• Use * and + to target path patterns.

• deny trumps everything; even if another policy allows access.

• All policies assigned to a user are merged, and the most
restrictive one wins.

58

Chapter 10: Policies in action

In the previous chapter, Alice logged in successfully. But when she
tried to read the secret we stored? Failed.

Vault did precisely what it’s supposed to do.

Every user or app must be explicitly granted access via policies,
Vault’s primary authorization mechanism.

Now it’s time to fix that but we can’t do it as Alice.

Important: Log Out as Alice and Log Back In
as Root
Since Alice only has the default policy, she can’t:

• Write or edit policies

59

• Assign policies to other users

• Manage Vault configuration

So first, we need to switch back to the root token or an admin-
level token you used during initialization:

vault login
Paste your root token when prompted

You should see something like:

Success! You are now authenticated.
token: s.rootxxxxxxxx
policies: [root]

Now we can proceed.

What is a Policy?
A policy is a set of rules that define:

• What paths in Vault a user or token can access

• What actions (read, write, list, delete, etc.) they can perform

You write policies in HCL or JSON format and assign them to users,
tokens, or apps.

Step 1: Create the kv1-reader Policy
This policy gives read-only access to KV v1 secrets stored under the
secret/ path.

Create a file named kv1-reader.hcl:

kv1-reader.hcl

60

path "secret/*" {
 capabilities = ["read", "list"]
}

To speed up the hands-on experience, we've already created the
policy files for you and placed them inside the chapter-09 folder.
If you're using the Docker start command from Chapter

2, the vault-beginner folder is automatically mounted

inside the Vault container at /home/vault/vault-

beginner. From now on, before executing any commands

mentioned in the upcoming chapters, make sure you

first navigate to this directory.

Apply the policy to Vault:

vault policy write kv1-reader chapter-09/kv1-

reader.hcl

Success! Policy uploaded.

Step 2: Create the kv2-reader Policy
KV v2 paths are structured differently. You need access to data/ for
secrets and metadata/ for listing.

Here’s the kv2-reader.hcl:

kv2-reader.hcl
path "kvv2/data/*" {
 capabilities = ["read"]
}

path "kvv2/metadata/*" {
 capabilities = ["list"]
}

Apply it:

61

vault policy write kv2-reader chapter-09/kv2-

reader.hcl

Done.

Step 3: Assign Both Policies to Alice
Now, let’s update Alice’s record to assign both policies (kv1-
reader and kv2-reader):

vault write auth/userpass/users/alice \
 password="123456" \
 policies="kv1-reader,kv2-reader"

Reminder: Always include the password during updates or it gets
wiped out.

Step 4: Verify Policies Assigned to Alice
To confirm which policies are assigned:

vault read auth/userpass/users/alice

Look for Policies:

62

Looking good.

Step 6: Log Back In as Alice
Now we’re done with the root user.

Let’s log back in as Alice:

vault login -method=userpass username=alice

password=123456

You should now see. Look at the policies assigned to user. Now
instead of just default policy, you will see 2 more policies attached to
the user.

63

Step 7: Test Access as Alice
Let’s try reading both types of secrets.

First, let’s read Kv-v1 secret engine.

vault kv get secret/myapp

It should work and you would see the result like below.

64

Now Let’s try Kv-v2 secret engine. Execute below command.

vault kv get kvv2/project1/api

It should work and you would see the result like below.

65

Now, let’s try to write something inside the kv-v2 secret engine. We
will use the same command we have used earlier. Let’s see what
happens.

vault kv put kvv2/project1/api key=newvalue789

It should fail because we have given Alice just read-only access.

66

Summary
• Alice had no access initially because she only had the
default policy.

• We switched back to the root user to create and assign new
policies.

• Gave Alice access to both KV v1 and KV v2 secrets through
separate policies.

• Saw how to list, inspect, and assign policies.

• Verified everything by logging in as Alice and testing access.

67

Chapter 11: Accessing Vault using
browser-based UI

So far, we've been interacting with Vault exclusively using the
command line. That’s powerful—but let’s be honest: sometimes, we
all appreciate a nice visual interface. In this chapter, we’ll explore
the Vault UI, which provides a point-and-click way to manage
secrets, auth methods, and more.

Let’s talk about the different ways to access Vault and what the UI is
(and isn’t) good for.

Vault provides three primary interfaces:

Interface Description Best Use Case

CLI
The command-line interface

we've used so far.

Day-to-day admin tasks,

scripting, automation.

HTTP API
The most complete way to

interact with Vault.

Used by applications and

integrations.

UI (Web

Interface)
A browser-based dashboard.

Good for exploring, learning,

and quick operations.

Important: The Vault UI is the least feature-rich interface. Some
advanced features (like AppRole pull-based Secret ID) can only be
done via CLI or API.

Enabling and Accessing the UI
The Vault UI is enabled by default in most Vault images if the
config has the following line. Have a look at your config file present
inside the vault-data/config/vault-config.hcl folder

68

ui = true

In case you want to disable the UI, simply set it to false in your
config file and restart the container using our same docker start
command.

ui = false

That’s it. Disabling the UI might be useful in high-security
production environments.

Once your container is running with ui = true, you can access the
UI by opening below URL in your browser.

http://localhost:8200

69

You can login at vault from UI by using the root token you received
during vault operator init.

Hands-On – Let’s use the UI to Manage a
Secret Engine
Let’s now perform some real operations using the UI. You’ve
already done these with the CLI—now let’s repeat them visually.

1. Enable KV Secret Engine at ui-dev

1. Go to Secrets Engines → Enable new engine

2. Choose KV

3. Set Path to ui-dev and let all the value as is.

4. Click Enable Engine

Done. You’ve created a versioned secret engine at ui-dev.

70

71

2. Put a New Value

1. Click into ui-dev

2. Click Create secret

3. Set the “Path for this secret” to sample

4. Under Secret data, add key: username, value: admin

5. Add another key: password, value: Vault4Life!

6. Click Save

You’ve just written data to ui-dev/sample.

3. List All Values
1. From the “Secret Engines” home page, click on “ui-dev”

2. You’ll see all paths inside this engine

72

3. Each listed path is a secret entry

4. Read the Value

1. Now click on the “Secret” tab, you’ll see the key-value pairs

2. You can copy the values from here for use elsewhere

73

5. Delete a Value

1. Now go back to the list page

2. Choose the three-dot menu (⋮) aginst the “Sample” avaliable
on the right handside.

3. Click on “Permanently delete”

74

6. Disable the Secret Engine
Once you're done experimenting:

1. Go to Secrets

2. Find ui-dev in the list

3. Click the three-dot menu (⋮)

4. Click Disable

This will completely remove the secret engine and all the secrets
under it.

75

Recap

• Vault offers CLI, HTTP API, and UI interfaces.

• The API is the most powerful and flexible.

• The UI is useful for quick access and exploration but doesn’t
support every feature.

• You can disable the UI in production for tighter security.

• We practised enabling and managing secrets visually using
the KV v2 engine.

Even though the UI is convenient, remember that anything done
through the UI can also be done via API calls. This is important
when scaling up or automating Vault in real systems.

76

Chapter 12: Understanding
Dynamic Secrets

Imagine you’re working in a growing team. You’ve got developers,
DevOps folks, and maybe even a few interns. They all need access to
sensitive systems, databases, cloud accounts, message queues,
internal APIs…

So you do what most teams do:

• Create a shared DB user.

• Give out long-lived cloud keys.

• Hope everyone remembers to rotate them.

• Panic when someone leaves the company.

Now, enter Vault’s dynamic secrets, your new best friend.

What Are Dynamic Secrets?
Dynamic secrets are ephemeral credentials that Vault generates
on-demand.

Instead of creating a user manually and storing their password in
Vault (a static secret), Vault talks to your system (like a database or
cloud provider), creates a brand-new user with a random password,
hands it over to the requester, and then destroys it after some
time.

These secrets:

• Are unique per request

77

• Have a short lifespan

• Are automatically revoked

• Leave zero traces once expired

It’s like printing a backstage pass that self-destructs after the show.

What Systems Can Use Dynamic Secrets?
Vault supports dynamic secret generation for:

Secret Engine Use Case

Databases
Generate DB users for PostgreSQL, MySQL,

MSSQL, etc.

Cloud Platforms
AWS, Azure, GCP – create short-lived API

keys or IAM roles

SSH One-time SSH access for remote machines

PKI Create short-lived TLS certificates for apps

TOTP Time-based OTP generation

RabbitMQ / MongoDB /

Cassandra
Temporary app credentials

More integrations are constantly added. If your system can create
users or rotate credentials, Vault can probably automate it.

Why Use Dynamic Secrets?
Here’s what makes dynamic secrets a game-changer:

78

1. Time-Limited Access

No more infinite credentials lying around. You request access, use it,
and Vault automatically revokes it after a set TTL (Time-To-Live).

2. Zero Sharing

Everyone gets their own secret. No more shared logins floating
around in Slack or email.

3. Audit-Ready

Every issued secret has a traceable path: who requested it, when,
and for what.

4. Kill Switch

If something smells fishy, you can revoke the secret instantly, like
shutting off a keycard in a hotel.

5. Perfect for Automation

CI pipelines, temporary microservices, even short-lived development
environments. Vault can create and destroy credentials on the fly.

Real-World Scenarios

Example 1: Dev Access to Databases

A developer needs read access to the production PostgreSQL
database for 20 minutes.

• Vault creates a user like v-token-readonly-12X9 with a
random password.

• Dev connects using it.

79

• After 20 minutes, Vault deletes that user from PostgreSQL.

• Nothing to clean up. No password to rotate.

Example 2: CI/CD Deployment to AWS

Your deployment pipeline needs to upload files to S3.

• Instead of hardcoding an IAM key in GitHub Actions, your
pipeline logs in to Vault.

• Vault generates temporary AWS keys with scoped
permissions.

• The job runs. Vault revokes the key after 15 minutes.

• Your AWS account stays clean and locked down.

Example 3: Secure Onboarding

A new engineer joins the team.

• You give her Vault access with limited policies.

• She requests credentials for staging systems through Vault.

• No need to update .env files, no shared secrets, no accidental
leaks.

The Payoff
With dynamic secrets:

• Your secrets stay fresh.

• Your blast radius shrinks.

• Your compliance posture improves.

• Your security team sleeps better.

80

It’s one of those features that makes you rethink how secrets
should work.

Now that your mind is prepped, in the next chapter, we’ll get
hands-on. We’ll connect Vault to a real system (like Mysql),
configure the secret engine, create a dynamic role, and watch Vault
generate credentials on the fly.

You’re going to love it.

Let’s go build it.

81

Chapter 13: Dynamic Secrets in
Action

Now that we understand what dynamic secrets are and why they’re
game-changing, it’s time to get hands-on.

We’ll configure Vault to dynamically generate MySQL credentials.
No manual provisioning, no password sharing. And we’ll watch it
happen in real-time using phpMyAdmin.

Let’s dive in.

Step 1: Set Up Your Playground with Docker
Compose
We’ll start:

• Vault

• MySQL (with a root password and a test database)

• phpMyAdmin (to visually track user creation)

Create a file named docker-compose.yml:

To speed up the hands-on experience, we've already created the
docker-compose.yml files for you and placed them inside the
chapter-13 folder. Make sure to go inside the chapter-13 folder before

executing the docker compose up -d command.

82

services:
 vault:
 image: hashicorp/vault:latest
 container_name: vault
 ports:
 - "8200:8200"
 environment:
 VAULT_DEV_LISTEN_ADDRESS: "0.0.0.0:8200"
 volumes:
 - ../vault-data/config:/vault/config
 - ../vault-data/file:/vault/file
 - ../vault-data/logs:/vault/logs
 - ../:/home/vault/vault-beginner
 cap_add:
 - IPC_LOCK
 command: "server"

 mysql:
 image: mysql:8.0
 container_name: mysql
 environment:
 MYSQL_ROOT_PASSWORD: rootpass
 MYSQL_DATABASE: vaultdb
 ports:
 - "3306:3306"

 phpmyadmin:
 image: phpmyadmin/phpmyadmin
 container_name: phpmyadmin
 environment:
 PMA_HOST: mysql
 MYSQL_ROOT_PASSWORD: rootpass
 ports:
 - "8080:80"

83

Step 2: Stop the old vault-dev container
If the container from the previous chapter is still running, you’ll
need to stop it before starting a new one.

Run:

docker stop vault-dev

This ensures there's no port conflict and a clean start for your new
setup.

Step 3: Start the Stack
Run:

docker compose up -d

This command will start three containers: HashiCorp Vault, MySQL
Database, and phpMyAdmin. Once they're up and running, you can
access the Vault UI and phpMyAdmin via the following URLs in your
browser:

• Vault UI → http://localhost:8200

• phpMyAdmin → http://localhost:8080
(login as root / rootpass)

Step 4: Attach to the Vault Container
To interact with Vault CLI inside the container, run below command.

docker exec -it vault-dev /bin/sh

Now you’re inside the Vault container.

http://localhost:8200/
http://localhost:8080/

84

Step 5: Export the Vault Address
Before using Vault CLI, we need to tell it where Vault is running.

export VAULT_ADDR=http://localhost:8200

This command sets the Vault server address as an environment
variable. The CLI uses this to send all your requests to Vault.

Step 6: Unseal the Vault
Vault is sealed by default for security. To unseal it, you need to
provide at least three unseal key shares from the initialization step
in Chapter 3.

Run the following command three times, each time providing one
unseal key when prompted:

vault operator unseal

Paste a different unseal key each time. After the third key, Vault will
be unsealed and ready to use.

Note: Use the unseal keys you saved during initialization. If those keys are
lost, you'll need to reinitialize Vault from scratch.

Step 7: Login to Vault
Login as root

vault login <your-root-token>

85

(Replace <your-root-token> with your actual root token you have
received when you performed the vault operator init.)

Step 8: Enable the Database Secrets Engine
Run:

vault secrets enable database

This enables the database/ path, which Vault uses to manage
connections and dynamic secrets for databases.

Step 9: Configure the MySQL Plugin
Here’s how we teach Vault to talk to our MySQL database:

vault write database/config/my-mysql-database \
 plugin_name=mysql-database-plugin \

connection_url="{{username}}:{{password}}@tcp(mysql:3

306)/" \
 allowed_roles="readonly-role" \
 username="root" \
 password="rootpass"

Let's break it down:

 my-mysql-database

This is just a logical name for your connection config. You’ll refer to
this again later when creating roles (using db_name=my-mysql-
database). Think of it like a reference alias.

86

 plugin_name

This tells Vault which plugin to use. For MySQL, it's always mysql-
database-plugin.

 connection_url

Vault uses this format to log into your MySQL server. The
placeholders {{username}} and {{password}} will be replaced by
the values below?????the root user and password.

The mysql:3306 is the container name and port inside Docker.

 allowed_roles

This field whitelists the roles that are allowed to use this database
configuration.
Only these roles (like readonly-role) will be permitted to
generate credentials for this DB. This is a critical security control.

Step 10: Define the Dynamic Credentials Role
Now, we create a role that defines how Vault should create MySQL
users.

vault write database/roles/readonly-role \
 db_name=my-mysql-database \
 creation_statements="CREATE USER '{{name}}'@'%'

IDENTIFIED BY '{{password}}'; GRANT SELECT ON

vaultdb.* TO '{{name}}'@'%';" \
 default_ttl="1m" \
 max_ttl="5m"

87

Let’s understand this:

 db_name=my-mysql-database

This links the role to the database config we created earlier (with
the name my-mysql-database).

 creation_statements

This is the real magic?????it tells Vault how to create a user in SQL.

CREATE USER '{{name}}'@'%' IDENTIFIED BY

'{{password}}';
GRANT SELECT ON vaultdb.* TO '{{name}}'@'%';

• {{name}} and {{password}} are placeholders that Vault
replaces when it generates a user.

• This user gets read-only access to everything in the vaultdb
database.

• The user is valid from any host (because of @'%').

 default_ttl and max_ttl

These define how long the user exists:

• Default time-to-live: 1 minute

• Max time-to-live: 5 minutes

Vault will automatically delete the user after the TTL expires unless
the lease is renewed.

Step 11: Generate Dynamic Credentials
Now we ask Vault to give us a new MySQL credential:

88

vault read database/creds/readonly-role

This triggers Vault to:

1. Generate a new MySQL user.

2. Insert it into MySQL.

3. Return the credentials to you.

Example output:

Let’s explain what just happened:

• vault read database/creds/readonly-role: This asks
Vault to create a dynamic secret for the readonly-role.

• Vault uses the role’s creation_statements to make a new
user.

• That user now exists in MySQL and can only read from
vaultdb.

Open phpMyAdmin, go to the Users tab, and you’ll see the new
user created by Vault!

89

Step 12: Watch TTL Expiry in Real Time
Wait 1 minute and refresh the users list in phpMyAdmin.
Poof. The user is gone.

That’s Vault cleaning up after itself?????just like it promised.

You can also revoke manually:

vault lease revoke <lease_id>

Replace <lease_id> with the one you got in the output above.

90

Recap
What we did:

• Created a local lab with Vault, MySQL, and phpMyAdmin.

• Configured Vault to connect to MySQL using secure root
credentials.

• Defined a role that generates dynamic MySQL users.

• Saw those users appear and disappear inside
phpMyAdmin?????like clockwork.

Next Up
In the next chapter, we’ll:

• Tweak TTLs and permissions for dynamic users.

• Build more complex SQL creation statements.

91

• Use Vault policies to allow users (like Alice) to request
dynamic DB credentials?????securely.

We're officially automating secure database access?????welcome to
the next level.

92

Chapter 14: Fine-Tuning and
Access Control on Dynamic
Secrets

In the previous chapter, we watched Vault create MySQL users on
the fly. Now, let’s refine that setup and introduce secure delegation.
We’ll:

• Explore advanced TTL control

• Create multiple roles with different permissions

• Use policies to delegate access to non-root users (like Alice)

Understand TTL Options
When creating dynamic secrets roles, Vault supports two TTL
settings:

 default_ttl = "1m"
 max_ttl = "5m"

 default_ttl

• This is how long the credential lasts by default.

• If the client doesn't explicitly renew it, Vault will revoke it after
this period.

 max_ttl

• The absolute upper limit for the secret's lifespan.

93

• Even with renewal, the secret cannot live beyond this.

Why this matters: If your app only needs short-lived access (e.g.,
quick backup scripts), this drastically reduces the blast radius in case
of compromise.

Before you begin: Ensure your Vault environment from

the previous chapter is up and running. If it isn’t,

please revisit and complete through Step 7 of that

chapter. Once your Vault stack is fully initialized,

unsealed and logged in as root, you can proceed with

the steps below.

Step 1: Create a New Read-Write Role
Let’s define a new role that gives read and write permissions on
the MySQL database:

vault write database/roles/readwrite-role \
 db_name=my-mysql-database \
 creation_statements="CREATE USER '{{name}}'@'%'

IDENTIFIED BY '{{password}}'; GRANT SELECT, INSERT,

UPDATE ON vaultdb.* TO '{{name}}'@'%';" \
 default_ttl="2m" \
 max_ttl="10m"

94

Step 2: Update the Database Config to Allow
New Read-Write Role

Let’s re-write the database config and include our newly created
readwrite-role in allowed_roles. Run below command

vault write database/config/my-mysql-database \

 plugin_name=mysql-database-plugin \

connection_url="{{username}}:{{password}}@tcp(mysql:3

306)/" \

 allowed_roles="readonly-role, readwrite-role" \

 username="root" \

 password="rootpass"

Step 3: Generate Dynamic Credentials

You can now generate a credential with:

vault read database/creds/readwrite-role

You will see the output something like below.

95

And if you check the PHPmyAdmin, you will see the same cred
present in MySQL database users liet.

Step 4: Secure Access with Policies
Let’s say you want Alice to be able to generate only read-only
MySQL credentials.

Let’s write a new policy for Alice. File name readonly-mysql-
policy.hcl

readonly-mysql-policy.hcl
path "database/creds/readonly-role" {
 capabilities = ["read"]
}

Create policy using the above policy file.

vault policy write readonly-mysql chapter-

14/readonly-mysql-policy.hcl

Attach the policy to Alice:

96

vault write auth/userpass/users/alice \
 password="123456" \
 policies="default,readonly-mysql"

Step 5: Validate Permissions
Log in as Alice:

vault login -method=userpass username=alice

password=123456

You will see the “readonly-mysql” policy is now attached to Alice.

Step 6: Generate a MySQL User for Alice with
Read-Only Access

Now let’s generate dynamic MySQL credentials for Alice using the
readonly-role, which is configured to grant read-only access.

97

Run the following command:

vault read database/creds/readonly-role

You should see Vault return a newly created MySQL username and
password, along with the lease duration—this account is tailored
specifically for Alice with read-only privileges.

Step 7: Attempt to Generate a MySQL User
for Alice with Read-Write Access
Next, try generating dynamic MySQL credentials for Alice using the
readwrite-role, which is configured to grant read-write access:

vault read database/creds/readwrite-role

Vault will return a permission denied error—exactly as expected.

98

Bingo! This confirms that Vault's fine-grained access control is
working. Alice doesn’t have access to this role, so Vault blocks the
request.

Wrap Up
You’ve now:

• Created roles with different DB access levels

• Controlled access via Vault policies

• Delegated MySQL access to a non-root user (Alice)

This is the Vault way:

• Least privilege

• Time-bound access

• Clear delegation without sharing root credentials

Coming up next: we’ll explore leases, renewals, and revocations in
dynamic secrets. How long can access live, and who decides when it
dies?

99

Chapter 15: Leasing, TTL, and
Vault’s Secret Lifecycle

Now that you've seen Vault dynamically generate MySQL credentials
for you (magic, right?), you might be wondering:

• How long do those credentials last?

• What happens when they expire?

• Can I revoke them early?

• Can I extend them?

• Can I restrict how many times they’re used?

This chapter dives into Vault's leasing mechanism?????the core
engine that governs how long secrets live, how they're revoked, and
how they behave after being handed out.

What Is a Lease?
When Vault generates a dynamic secret (like our MySQL
credentials), it also generates a lease. A lease is like a signed
contract between you and Vault:

"Here’s your secret. You're allowed to use it for X seconds or Y
number of times. After that, it's gone."

Every lease has:

• A lease_id

• A lease_duration (TTL)

100

• A renewable flag

• Optionally, a num_uses limit

Example:

lease_id: database/creds/readonly-

role/abc123456

lease_duration: 1h

renewable: true

TTL (Time to Live)
TTL determines how long the secret remains valid. After the TTL,
Vault automatically revokes the secret.

TTL can be configured:

• On the secret engine

• On the role

• At the Vault server level

Example during role creation:

vault write database/roles/readonly-role \
 db_name=my-mysql-database \
 creation_statements="..." \
 default_ttl="1h" \
 max_ttl="24h"

• default_ttl: Applies to leases unless manually overridden.

• max_ttl: The maximum TTL even if a lease is renewed
multiple times.

101

3. num_uses: Expire After X Uses
Besides TTL, Vault allows you to set a num_uses on a role?????which
limits how many times a generated secret can be used, regardless
of the TTL.

Once the credential is used the specified number of times, Vault
automatically revokes the lease.

This is incredibly useful for:

• One-time login credentials

• Scripts or apps that only need brief access

• Preventing credential reuse in CI/CD pipelines

Here’s how to set it correctly during role creation:

vault write database/roles/readonly-role \

 db_name=my-mysql-database \

 creation_statements="..." \

 default_ttl="1h" \

 max_ttl="24h"

 num_uses=1

num_uses : Every time a secret is issued using this role, that
username/password will expire after one use?????no matter how
much time is left on the TTL.

You can verify this behavior by issuing credentials:

vault read database/creds/readonly-role

Try using the username and password once?????it’ll work.
Try again? It’s already revoked.

102

4. Viewing Active Leases
To list leases for a role:

vault list sys/leases/lookup/database/creds/readonly-

role

To look up lease details:

vault lease lookup <lease_id>

5. Renewing a Lease
If the lease is renewable and TTL hasn’t hit max_ttl, you can
extend the lease:

vault lease renew <lease_id>

This is especially useful for long-running applications or sessions
that don’t want to re-authenticate.

6. Revoking a Lease
Need to shut off access early? Use:

vault lease revoke <lease_id>

This invalidates the associated secret and revokes access on the
spot.

You can also revoke everything under a path:

vault lease revoke -prefix database/creds/readonly-

role

103

7. Lease vs Static Secrets
Let’s make the distinction clear:

Feature
Static Secret (e.g.,

KV)

Dynamic Secret (e.g.,

DB)

Manually managed Yes No

Automatically expired No Yes

TTL-based No Yes

num_uses support No Yes

Auto-revocation No Yes

8. Why Leases Matter
This leasing model gives you control, auditability, and peace of
mind. Imagine:

• An app gets hacked. Revoke the lease = instant kill switch.

• You want a password to expire after one use. num_uses = 1.

• You rotate secrets every hour. TTL handles it for you.

Vault isn’t just storing secrets. It’s managing their lifecycle securely,
on your behalf.

104

Chapter 16: Dynamic Secrets with
PostgreSQL

Introduction
We’ve seen how Vault dynamically creates database credentials for
MySQL. Now it’s time to explore the same for PostgreSQL.

In this chapter, we’ll:

• Spin up Vault, PostgreSQL, and Adminer using Docker
Compose.

• Configure Vault to generate PostgreSQL users on the fly.

• Understand the configuration options like
creation_statements, allowed_roles, and templating
variables like {{name}}.

• Test the generated secrets with Adminer.

Step 0: Clean Up Previous Setup
Before we begin, let’s make sure no conflicting containers are
running from our previous exercises.

Run:

docker compose down

This will stop and remove all existing containers. We’re starting
fresh.

105

To speed up the hands-on experience, we've already created the
docker-compose.yml files for you and placed them inside the
chapter-16 folder. Make sure to go inside the chapter-16 folder
before executing the docker compose up -d command.

Step 1: Docker Compose Playground
Here’s our new docker-compose.yml to spin up Vault, PostgreSQL,
and Adminer (our DB web UI):

services:
 vault-dev:
 image: hashicorp/vault:latest
 container_name: vault-dev
 ports:
 - "8200:8200"
 environment:
 VAULT_DEV_LISTEN_ADDRESS: "0.0.0.0:8200"
 volumes:
 - ../vault-data/config:/vault/config
 - ../vault-data/file:/vault/file
 - ../vault-data/logs:/vault/logs
 - ../:/home/vault/vault-beginner
 cap_add:
 - IPC_LOCK
 command: "server"
 postgres:
 image: postgres:15
 container_name: postgres
 environment:
 POSTGRES_USER: root
 POSTGRES_PASSWORD: rootpassword
 POSTGRES_DB: vaultdb
 ports:
 - "5432:5432"
 adminer:
 image: adminer
 container_name: adminer

106

 ports:
 - "8080:8080"

What’s happening here?

• Vault: Starts our vault server.

• Postgres: Starts with:

• Username: root

• Password: rootpassword

• Database: vaultdb

• Adminer: Lightweight web UI for interacting with the
database.

Start everything:

docker-compose up -d

Step 2: Attach to the Vault Container
To interact with Vault CLI inside the container, run below command.

docker exec -it vault-dev /bin/sh

Now you’re inside the Vault container.

Step 3: Export the Vault Address
Before using Vault CLI, we need to tell it where Vault is running.

export VAULT_ADDR=http://localhost:8200

107

This command sets the Vault server address as an environment
variable. The CLI uses this to send all your requests to Vault.

Step 4: Unseal the Vault
Vault is sealed by default for security. To unseal it, you need to
provide at least three unseal key shares from the initialization step
in Chapter 3.

Run the following command three times, each time providing one
unseal key when prompted:

vault operator unseal

Paste a different unseal key each time. After the third key, Vault will
be unsealed and ready to use.

Note: Use the unseal keys you saved during initialization. If those
keys are lost, you'll need to reinitialize Vault from scratch.

Step 5: Login to Vault
Login as root

vault login <your-root-token>

(Replace <your-root-token> with your actual root token you have
received when you performed the vault operator init.)

108

Step 6: Enable Database Secrets Engine on a
Custom Path
This time, we’ll enable the database secrets engine on a custom
path named pgdb.

vault secrets enable -path=pgdb database

Why use a custom path?

By default, Vault enables secrets engines at paths like database/,
kv/, etc. But using a custom path (pgdb in this case) gives you
flexibility:

• You can manage multiple databases (e.g., MySQL,
PostgreSQL) side by side.

• You avoid name clashes if different roles or apps use different
engines.

• It improves clarity and structure in your Vault layout.

All of our subsequent Vault commands in this chapter will use the
pgdb/ path to interact with PostgreSQL.

Step 4: Configure Vault to Connect to
PostgreSQL
Vault will need root credentials to manage PostgreSQL roles.
Instead of hardcoding them, we’ll use Vault templating to inject
them via environment variables:

vault write pgdb/config/my-postgres-db \

 plugin_name=postgresql-database-plugin \

109

 allowed_roles="readonly-role" \

connection_url="postgresql://{{username}}:{{password}

}@postgres:5432/vaultdb?sslmode=disable" \

 username="root" \

 password="rootpassword"

Breakdown:

• pgdb/config/my-postgres-db: Path where this config is
saved.

• plugin_name: Tells Vault what type of DB plugin to use.

• allowed_roles: Only these Vault roles are allowed to use
this DB config.

• connection_url: Vault injects {{username}} and
{{password}} from below.

• username and password: Used to authenticate with the DB
(as root).

This setup gives Vault full control over the database.

110

Step 5: Create a Readonly Role

vault write pgdb/roles/readonly-role \
 db_name=my-postgres-db \
 creation_statements="CREATE ROLE \"{{name}}\" WITH

LOGIN PASSWORD '{{password}}' VALID UNTIL

'{{expiration}}'; GRANT SELECT ON ALL TABLES IN

SCHEMA public TO \"{{name}}\";" \
 default_ttl="1h" \
 max_ttl="24h" \
 num_uses=5

What’s happening here?

• pgdb/roles/readonly-role: Our dynamic role path.

• db_name: Links to the my-postgres-db config we wrote
earlier.

• creation_statements: SQL used to create the dynamic
user.

Let’s dissect the placeholders:

• {{name}}: Vault-generated username.

• {{password}}: Vault-generated password.

• {{expiration}}: Time when the credential should expire.

So every time this role is used, Vault will:

• Generate a unique username/password.

• Grant read-only (SELECT) access to the public schema.

• Set TTL and number of uses to expire/lock the credentials.

111

Step 6: Generate Dynamic Credentials
Run:

vault read pgdb/creds/readonly-role

You will see output like below.

This credential is valid for 1 hour or 5 uses—whichever comes first.

Step 7: Use It with Adminer
1. Go to http://localhost:8080

2. Fill in:

• System: PostgreSQL

• Server: postgres

• Username and Password: From the Vault response

• Database: vaultdb

http://localhost:8080/

112

3. Hit Login. You should land in the DB with read-only rights.

113

Optional: Revoke the Dynamic Secret
Run below command. Don’t forget to replace <<lease_id>> to the
real id you have received from the step 6.

vault lease revoke <<lease_id>>

This will instantly disable the secret.

114

Conclusion
You just learned how to configure dynamic secrets for PostgreSQL
with Vault.

We:

• Brought up a full stack using Docker.

• Enabled the database engine on a custom path.

• Injected credentials via variables.

• Created and tested a real-time generated database user.

• Explored advanced options like num_uses and {{name}}
templating.

115

Chapter 17: Dynamic Secrets with
MongoDB

MongoDB is a widely-used NoSQL database. In this chapter, we’ll
configure Vault to dynamically generate credentials for MongoDB,
so users or apps never need to know the database root credentials.
Vault will create, manage, and revoke them on demand.

Step 0: Clean Up Previous Setup
Before we begin, let’s make sure no conflicting containers are
running from our previous exercises.

Run:

docker compose down

This will stop and remove all existing containers. We’re starting
fresh.

To speed up the hands-on experience, we've already created the
docker-compose.yml files for you and placed them inside the
chapter-17 folder. Make sure to go inside the chapter-17 folder
before executing the docker compose up -d command.

Step 1: Docker Compose Setup (Vault +
MongoDB)
Let’s set up our environment. Create a docker-compose.yml file
with the following content:

116

services:
 vault-dev:
 image: hashicorp/vault:latest
 container_name: vault-dev
 ports:
 - "8200:8200"
 environment:
 VAULT_DEV_LISTEN_ADDRESS: "0.0.0.0:8200"
 volumes:
 - ../vault-data/config:/vault/config
 - ../vault-data/file:/vault/file
 - ../vault-data/logs:/vault/logs
 - ../:/home/vault/vault-beginner
 cap_add:
 - IPC_LOCK
 command: "server"
 mongo:
 image: mongo:6
 container_name: mongo
 restart: always
 ports:
 - "27017:27017"
 environment:
 MONGO_INITDB_ROOT_USERNAME: root
 MONGO_INITDB_ROOT_PASSWORD: password

117

Start Your Services

Bring up your Vault + MongoDB stack:

docker compose up -d

Step 2: Attach to the Vault Container
To interact with Vault CLI inside the container, run below command.

docker exec -it vault-dev /bin/sh

Now you’re inside the Vault container.

Step 3: Export the Vault Address
Before using Vault CLI, we need to tell it where Vault is running.

export VAULT_ADDR=http://localhost:8200

This command sets the Vault server address as an environment
variable. The CLI uses this to send all your requests to Vault.

Step 4: Unseal the Vault
Vault is sealed by default for security. To unseal it, you need to
provide at least three unseal key shares from the initialization step
in Chapter 3.

Run the following command three times, each time providing one
unseal key when prompted:

vault operator unseal

118

Paste a different unseal key each time. After the third key, Vault will
be unsealed and ready to use.

Note: Use the unseal keys you saved during initialization. If those
keys are lost, you'll need to reinitialize Vault from scratch.

Step 5: Login to Vault
Login as root

vault login <your-root-token>

(Replace <your-root-token> with your actual root token you have
received when you performed the vault operator init.)

Step 6: Enable the Database Secrets Engine
on the custom path
Now that you're connected to Vault, enable the database secrets
engine on a custom path called mongo-db:

vault secrets enable -path=mongo-db database

We use a custom path to keep secrets engines organized. This way,
multiple engines (e.g., MySQL, Postgres, MongoDB) won’t conflict.

Step 7: Configure MongoDB Connection
Set up the database configuration. Replace <USERNAME> and
<PASSWORD> with environment variable references:

vault write mongo-db/config/main \
 plugin_name=mongodb-database-plugin \

119

 allowed_roles="readonly" \

connection_url="mongodb://{{username}}:{{password}}@m

ongo:27017/admin?authSource=admin" \
 username="root" \
 password="password"

Explanation

• plugin_name: Uses the official MongoDB plugin.

• allowed_roles: Lists roles that are allowed to use this DB
connection.

• connection_url: Connection string using Vault's
placeholders ({{username}}, {{password}}) that Vault
injects dynamically.

• username/password: MongoDB root credentials (set via
environment).

Step 8: Create a Dynamic Role
Now define the dynamic role readonly:

vault write mongo-db/roles/readonly \
 db_name=main \
 creation_statements='{ "db": "admin", "roles":

[{ "role": "readAnyDatabase", "db": "admin" }] }' \
 default_ttl="1h" \
 max_ttl="24h"

What’s happening?

• db_name=main: Tells Vault to use the DB config we defined
earlier.

120

• creation_statements: A MongoDB-specific JSON payload
that defines what kind of user to create and what roles to
assign.

• default_ttl and max_ttl: Lifetime of the dynamic
credentials.

The dynamic user will get a random username and password with
readAnyDatabase privileges.

Step 9: Generate Dynamic Credentials
Let’s generate a set of dynamic credentials for the readonly role:

vault read mongo-db/creds/readonly

You’ll see that the new user has been dynamically created inside
MongoDB, and will expire after 1 hour unless renewed.

Now let’s try to connect on the mongodb server using the newly
dynamic secret.

Run below command which will connect us on the mongoDB server
running inside our vault stack. Don’t forget to replace the
<<username>> and <<password>> with the one you have received.

121

This command connects you to the MongoDB instance running
inside our Vault stack using the temporary credentials Vault just
generated.

You should see the successful login screen like below.

Want to Verify in Mongo Shell?
You can connect to the MongoDB as root user:

docker exec -it mongo mongosh -u root -p password --

authenticationDatabase admin

Then run below command:

use admin
db.system.users.find()

122

You’ll see a user with a name like v-root-readonly-.... like
below.

123

Optional: Revoke the Dynamic Secret
Run below command. Don’t forget to replace <<lease_id>> to the
real id you have received from the step 9.

vault lease revoke <<lease_id>>

This will instantly disable the account.

You just learned how to configure dynamic secrets for MongoDB
with Vault.

124

Chapter 18: Getting Started with
the Vault API, Your First Step to
Automation

So far, you've been interacting with Vault using the command-line
interface (CLI). It's intuitive and ideal for manual tasks. But software
doesn't use a terminal—it speaks through APIs. If you want your
applications, automation scripts, or microservices to talk to Vault,
you need to understand how to use Vault's HTTP API.

This chapter marks the transition from human-driven CLI
interaction to machine-driven API automation.

Why Learn the Vault API?
Here’s the reality:

If you want to automate anything with Vault authenticating, issuing
secrets, rotating credentials, you’ll need to use the API.

CLI HTTP API

Made for people Made for machines

Simple commands Standard HTTP requests

Not automation-friendly Ideal for scripts, apps, pipelines

Manual Repeatable and scalable

The HTTP API allows Vault to be deeply integrated into your
applications and systems. Every single action you’ve taken with the
CLI enabling secrets engines, reading secrets, logging in is powered

125

underneath by an API call. Vault’s CLI is simply a wrapper over its
HTTP API. Now we’re peeling back the wrapper.

In this chapter, we’ll explore how to interact with Vault
programmatically using HTTP API calls, which is essential for
automation and integrating Vault into applications or services. We
will specifically work with the KV V2 secrets engine, which allows
you to store and manage secrets as key-value pairs.

Step 0: Clean Up Previous Setup
Before we begin, let’s make sure no conflicting containers are
running from our previous exercises.

Run:

docker compose down

This will stop and remove all existing containers. We’re starting
fresh.

Step 1: Start a Vault Container
Run the following command to start a standalone Vault container,
which is sufficient for this exercise.

docker run -d --rm \
 -p 8200:8200 \
 -v $(pwd)/vault-data/config:/vault/config \
 -v $(pwd)/vault-data/file:/vault/file \
 -v $(pwd)/vault-data/logs:/vault/logs \
 -v $(pwd):/home/vault/vault-beginner \
 --cap-add=IPC_LOCK \
 --name vault-dev \
 hashicorp/vault:latest server

126

Before starting the Vault container, make sure you're in the root
directory of the project, the vault-beginner folder.

So far, we've been unsealing Vault using the CLI. In this chapter,
we’ll switch gears and do everything using the Vault HTTP API.

To follow along:

• Keep your existing Vault container running.

• Open a new terminal tab or window so you can make API
requests while Vault is live.

• You’re absolutely free to use an API client like Postman,
Insomnia, or Bruno—whatever you're comfortable with.

• But to keep things tool-agnostic and beginner-friendly, I’ll be
using curl for all examples in this chapter.

Step 2: Set Environment Variables
Let’s set a few environment variables to make our API calls cleaner
and avoid repeating values like the Vault address and token every
time.

Run the following in your terminal:

export VAULT_ADDR=http://127.0.0.1:8200
export VAULT_TOKEN=<<YOUR_ROOT_TOKEN>>

Don’t forget to replace <<YOUR_ROOT_TOKEN>> with the root token
you received in Chapter 3.

With these set, any curl requests we make will be easier to read
and maintain.

127

Step 3: Unseal the Vault
Vault requires three unseal keys to unseal. Run the following API
request three times, replacing the key each time with one of your
unseal keys:

curl -s \
 --request PUT \
 --data '{"key": "<<UNSEAL_KEY>>"}' \
 $VAULT_ADDR/v1/sys/unseal

In each curl command above, make sure to replace
<<UNSEAL_KEY>> with one of the actual unseal keys you received
when you initialized Vault in Chapter 3.

After the third successful call, Vault will return "sealed": false
indicating it's ready to use!

128

Step 4: Enable the KV V2 Engine via API
Let’s enable the KV V2 secrets engine on the api-exp path using
the HTTP API. In this step, we will send a POST request to enable the
KV V2 engine.

curl -s \
 --header "X-Vault-Token: $VAULT_TOKEN" \
 --request POST \
 --data '{"type": "kv", "options": {"version":

"2"}}' \
 $VAULT_ADDR/v1/sys/mounts/api-exp

Explanation:

• X-Vault-Token: $VAULT_TOKEN: The authentication token
for the Vault API.

129

• --request POST: This sends a POST request to Vault to
enable the engine.

• --data '{"type": "kv", "options": {"version":

"2"}}': Specifies that we are enabling the KV engine with
version 2.

• $VAULT_ADDR/v1/sys/mounts/api-exp: The custom path
where we want to enable our Kvv2 secret engine.

Once enabled, you’ll be able to start storing and retrieving
versioned secrets at:

api-exp/data/<<ANY_NAME_YOU_LIKE>>

Step 5: Create, Read, Delete, and List Secrets
via API
Now that the KV V2 engine is enabled, we will go through the basic
secret operations such as creating, reading, listing, and deleting
secrets.

5.1 Create a Secret

Let’s add a new secret under the path api-exp/data/app1

curl -s \
 --header "X-Vault-Token: $VAULT_TOKEN" \
 --request POST \
 --data '{"data": {"username": "admin", "password":

"password123"}}' \
 $VAULT_ADDR/v1/api-exp/data/app1

130

Explanation:

• --request POST: We are sending a POST request to create a
secret.

• --data '{"data": {"username": "admin",

"password": "password123"}}': The actual secret data,
which is stored as key-value pairs under data.

• $VAULT_ADDR/v1/api-exp/data/app1: The path where the
secret is stored.

On success, you will see the response like below.

131

5.2 Read a Secret

To retrieve the secret stored under api-exp/data/app1, use the
following GET request:

curl -s \
 --header "X-Vault-Token: $VAULT_TOKEN" \
 $VAULT_ADDR/v1/api-exp/data/app1

Explanation:

• --request GET: By default, curl uses GET for the read
operation.

132

• $VAULT_ADDR/v1/api-exp/data/app1: The path where the
secret is stored.

5.3 List Secrets

To list all secrets in the api-exp path, use this API call:

curl -s \
 --header "X-Vault-Token: $VAULT_TOKEN" \
 $VAULT_ADDR/v1/api-exp/metadata/app1

Explanation:

• /v1/api-exp/metadata/app1: This is the path to list all the
metadata for secrets stored in the KV V2 engine.

133

5.4 Delete a Secret

To delete a secret, send a DELETE request:

curl -s \
 --header "X-Vault-Token: $VAULT_TOKEN" \
 --request DELETE \
 $VAULT_ADDR/v1/api-exp/data/app1

Explanation:

• --request DELETE: The DELETE HTTP method removes the
secret from Vault.

134

• $VAULT_ADDR/v1/api-exp/data/app1: The path of the
secret to delete.

Step 6: Recover a Deleted Secret
Sometimes you might delete a secret by mistake. Vault provides the
ability to soft-delete secrets and recover them later.

6.1 Recover a Deleted Secret

If you’ve deleted a secret, you can recover it by sending a POST
request to the /undelete endpoint:

curl -s \
 --header "X-Vault-Token: $VAULT_TOKEN" \
 --request POST \
 --data '{"versions":[1]}' \
 $VAULT_ADDR/v1/api-exp/undelete/app1

Explanation:

• --data '{"versions": [1]}': The version number you
wish to recover (you can check which versions are available
from the metadata).

• $VAULT_ADDR/v1/api-exp/undelete/app1/: The path to
the secret that was deleted in this pattern /:secret-mount-
path/undelete/:path

6.2 Verify Recovery

Once you’ve recovered a secret, you can verify its restoration by
reading it again:

curl -s \

135

 --header "X-Vault-Token: $VAULT_TOKEN" \
 $VAULT_ADDR/v1/api-exp/data/app1

Summary
In this chapter, we covered the basic operations you can perform
with the Vault API on the KV V2 secrets engine. The key points we
addressed are:

1. Enabling the KV V2 Engine: We used the API to enable the KV
V2 secrets engine.

2. Create, Read, Delete, List Secrets: We performed the basic
operations using the Vault API.

3. Recovering Deleted Secrets: We learned how to recover a
soft-deleted secret using the API.

136

Chapter 19: AppRole
Authentication Method, Vault
Meets Automation

So far, we've operated Vault entirely through human interactions—
logging in with tokens, enabling secret engines, and setting policies
manually. But in a real-world production environment, this model
doesn’t scale. Services, applications, CI/CD pipelines, and
background workers need a secure way to authenticate with Vault
without human intervention.

That’s where AppRole comes in.

AppRole is a secure and flexible authentication method tailored for
machines. It provides a way for applications to authenticate to Vault
and receive a token with tightly scoped permissions. Unlike static
tokens, AppRole uses two distinct pieces of information—Role ID
and Secret ID—to authenticate. This separation of credentials
reduces the risk of unauthorized access.

Why AppRole?
Before diving into the implementation, let’s understand the use
case for AppRole:

• A CI/CD pipeline needs to pull secrets from Vault to deploy
services.

• A containerized microservice needs credentials to connect to
a database.

137

• A backend job needs a time-limited token to access sensitive
configuration.

In each of these scenarios, there’s no human in the loop. AppRole
enables secure, programmatic authentication by issuing short-lived
tokens—perfect for automation.

Concepts Behind AppRole
There are a few new terms you'll want to become familiar with:

• Role ID: A static identifier assigned to the AppRole. Think of it
as the username.

• Secret ID: A short-lived, limited-use credential that acts like a
one-time password. That means:

• It has a time-to-live (TTL), after which it becomes
invalid.

• It can be configured to only be used a certain number
of times.

• It helps enforce tighter security, especially in
automated environments.

• AppRole Token: A Vault token issued after a successful
authentication using the Role ID and Secret ID.

You can also fine-tune behaviors such as:

• Token TTL

• Token usage count (via num_uses)

• CIDR-bound usage (IP whitelisting)

138

• Secret ID lifecycle (e.g., automatic rotation or manual
generation)

Let’s walk through configuring and using the AppRole
authentication method in Vault.

In this example, we’ll set up a microservice that uses the AppRole
authentication method to identify itself and retrieve database
credentials. To keep things simple, we’ll fetch a static secret from
the KV v2 secrets engine instead of using dynamic credentials—
which we’ve already covered. The overall process remains nearly the
same for both types of secrets.

Step 1: Prepare Vault Using Docker Compose
Let’s start our vault container by running the below command.

docker run -d --rm \
 -p 8200:8200 \
 -v $(pwd)/vault-data/config:/vault/config \
 -v $(pwd)/vault-data/file:/vault/file \
 -v $(pwd)/vault-data/logs:/vault/logs \
 -v $(pwd):/home/vault/vault-beginner \
 --cap-add=IPC_LOCK \
 --name vault-dev \
 hashicorp/vault:latest server

Step 2: Attach to the Vault Container

docker exec -it vault-dev /bin/sh

Inside the container, set the Vault address in env variable:

139

export VAULT_ADDR='http://127.0.0.1:8200'

Step 3: Unseal the Vault
Vault is sealed by default for security. To unseal it, you need to
provide at least three unseal key shares from the initialization step
in Chapter 3.

Run the following command three times, each time providing one
unseal key when prompted:

vault operator unseal

Paste a different unseal key each time. After the third key, Vault will
be unsealed and ready to use.

Step 4: Login to Vault
Login as root

vault login <your-root-token>

(Replace <your-root-token> with your actual root token you have
received when you performed the vault operator init.)

Step 5: Enable KV v2 at a Custom Path
Let’s first enable the KV v2 secrets engine at a custom path named
myapp.

vault secrets enable -path=myapp -version=2 kv

You should see the success message like below.

140

Step 6: Store a Static Secret in KV v2
Now store a dummy database credential that your microservice will
eventually read.

vault kv put myapp/webapp/dbcreds \
 username="app_user" \
 password="SuperSecret123"

Step 7: Create a Vault Policy
We’ll now create a policy that allows read access to only this secret
path. Create a policy file myapp.hcl with this content:

path "myapp/data/webapp/dbcreds" {
 capabilities = ["read"]
}

141

Before applying the policy, make sure you're inside the main
project directory, vault-beginner. This ensures Vault can access
the policy file stored in the correct folder structure.

Navigate to the project directory where the myapp.hcl policy file is
located:

cd /home/vault/vault-beginner

This is the location where we’ve already placed the policy file for
you. Apply the policy:

vault policy write myapp-reader chapter-19/myapp.hcl

Step 8: Enable AppRole Authentication
If AppRole is not already enabled, enable it:

vault auth enable approle

Step 9: Create the AppRole and Bind the
Policy
Create a new AppRole and associate it with the reader policy we
have just created. This will give the read only permission on our
store secrets on myapp/webapp/dbcreds path.

vault write auth/approle/role/myapp \
 token_policies="myapp-reader" \
 secret_id_ttl=60m \
 token_ttl=20m \
 token_max_ttl=60m \
 secret_id_num_uses=5

142

Let’s break it down:

• auth/approle/role/myapp: This is the path under which
the AppRole is registered.

• token_policies: The name of the Vault policy that this
role’s token will inherit.

• token_ttl: How long the token will live by default.

• token_max_ttl: The maximum lifetime of the token.

• secret_id_ttl: The validity period of the Secret ID.

• secret_id_num_uses: This Secret ID can only be used 5
times.

Now that the AppRole authentication is set up, any application can
authenticate and retrieve the stored credentials. The next step is to
generate a Role ID and Secret ID—these act like the username and
password for your application. With them, the application can
authenticate to Vault and fetch the secrets it needs.

Step 10: Fetch Role ID and Secret ID
The microservice needs these to log in.

Get Role ID
vault read auth/approle/role/myapp/role-id

Generate a Secret ID
vault write -f auth/approle/role/myapp/secret-id

You’ll see an output similar to the one below. Make sure to copy and
save both the role_id and secret_id. we’ll need them in the next

143

steps.

You're now fully set up on the Vault side and ready for a test run. In
this step, we’ll deploy a pre-built Python-based microservice that
connects to Vault using the AppRole authentication method. The
service will:

1. Send its Role ID and Secret ID to Vault.

2. Authenticate and receive a Vault token.

3. Use that token to retrieve the secret we stored earlier in the
kv-v2 path.

To keep things simple and streamlined, we’ll stop the standalone
Vault container and launch both Vault and the microservice using
Docker Compose. This automatically creates a shared network
between the containers, allowing them to communicate
seamlessly—no extra manual setup required.

144

Let’s get started.

Step 11: Stop the vault standalone container
To stop the vault standalone container, run the below command :

docker stop vault-dev

Step 12: Configure and start the microservice
To start both containers using Docker Compose and ensure they
can talk to each other, follow these steps:

First, navigate to the chapter-19 folder of your project:

cd vault-beginner/chapter-19

Inside this folder, you'll find a file named docker-compose.yaml.
Open it in your preferred editor.

Locate line 27 and 28, where you’ll see placeholder values:

ROLE_ID: <<WRITE_YOUR_ROLE_ID>>
SECRET_ID: <<WRITE_YOUR_SECRET_ID>>

Replace these placeholders with the actual role_id and
secret_id that you generated earlier.

Once updated, save and close the file. You’re now ready to spin up
both containers with proper networking using:

docker-compose up

This will boot both Vault and the microservice, with environment
variables injected and internal networking already handled for you.

145

Step 13: Attach to the Vault Container
Run the following command to attach to the Vault container:

docker exec -it vault-dev /bin/sh

Inside the container, set the Vault address in env variable:

export VAULT_ADDR='http://127.0.0.1:8200'

Step 14: Unseal the Vault
Whenever Vault is restarted, it automatically seals itself for security.
Before our microservice—or any service—can access secrets, we
must unseal Vault first. To unseal it, you need to provide at least
three unseal key shares from the initialization step in Chapter 3.

Run the following command three times, each time providing one
unseal key when prompted:

vault operator unseal

Paste a different unseal key each time. After the third key, Vault will
be unsealed and ready to use.

For the curious minds
If you're interested in what’s happening behind the scenes at the
microservice level, I’ve included the Python source code in the file
named microservice.py inside the chapter-19 folder. I highly
recommend giving it a read to better understand how the

146

microservice authenticates with Vault, handles the token, and
retrieves secrets.

Step 15: Testing the microservice
Now that both the Vault and microservice containers are up and
running—and Vault has been unsealed—it’s time to test if
everything is working correctly.

Open your browser or any API client of your choice and navigate to:
http://localhost:8000/

You should see a JSON response displaying the credentials we
stored earlier in Step 6.

If you keep refreshing the page, the microservice will continue to
return the same credentials. However, after five successful
attempts, the Role ID and Secret ID will expire. On the sixth
attempt, authentication will fail, and the microservice will return an
internal server error indicating that it could not authenticate with
Vault.

http://localhost:8000/

147

Step 16: Shutdown lab
Once you're done with your practice, it's time to shut down our lab
setup (Vault and the microservice). To stop and clean up the
running containers, simply run:

docker compose down

This will gracefully stop both services and remove the associated
containers and network. Don’t worry, your Vault data remains safe!
It’s stored in persistent storage, so it won’t be lost.

Summary
AppRole is your go-to method for secure, programmatic access to
Vault. It's flexible, supports automation-friendly token
management, and is production-ready. Now your machines have a
voice in the Vault ecosystem, without compromising security.

148

Chapter 20: Vault Agent and
Templating, Bridging the Gap for
Legacy Apps

Up until now, we've pulled secrets automatically using AppRole,
with the application talking directly to Vault. So, you might be
wondering—if the credentials are already automated, why do we
need Vault Agent at all?

Good question.

Vault Agent becomes essential when you're dealing with legacy
applications or third-party tools that can’t talk to Vault directly.
These apps often expect credentials to be available in plain files like
config files or environment files rather than fetching them
dynamically via an API.

Vault Agent acts as a middleman. It runs alongside your application,
handles authentication (like AppRole under the hood), pulls secrets
from Vault, and writes them to disk in a format your app expects. It
can even watch for secret rotations and update those files
automatically, all without restarting the application.

In short:
Vault Agent brings Vault’s dynamic secrets to apps that never
heard of Vault.

In this chapter we will learn

• What is Vault Agent?

• What is the Vault Template?

149

• Why and when you should use it

• How to configure Vault Agent

• Running Vault Agent with auto-auth and template rendering

• Live example using KV-v2 engine

• Common pitfalls and real-world use cases

What Is Vault Agent?
Vault Agent is a helper tool provided by HashiCorp Vault that does
three major things:

1. Auto-Authentication
Vault Agent can authenticate to Vault using supported auth
methods like AppRole, AWS, Kubernetes, etc., and retrieve a
client token.

2. Token Renewal
It can keep that token alive using periodic renewal, avoiding
the need to re-authenticate repeatedly.

3. Template Rendering
Using Hashicorp Consul Template syntax, Vault Agent can
fetch secrets and render them to a file on disk. This is
incredibly useful when apps are not Vault-aware but still need
secrets.

Vault Agent Configuration Anatomy
Here’s what a basic Vault Agent config file looks like:

exit_after_auth = false
pid_file = "/tmp/vault-agent.pid"

150

auto_auth {
 method "approle" {
 mount_path = "auth/approle"
 config = {
 role_id_file_path = "/etc/vault/role_id.txt"
 secret_id_file_path =

"/etc/vault/secret_id.txt"

 remove_secret_id_file_after_reading = false
 }
 }

 sink "file" {
 config = {
 path = "/etc/vault/token.txt"
 }
 }
}

template {
 source = "/etc/vault/db-creds.tpl"
 destination = "/etc/secrets/db.env"
}

Let's Break It Down:

exit_after_auth

• If true, Vault Agent will exit after acquiring a token.

• We want a long-running process, so we keep it false.

pid_file

• Path to a file storing the Agent's process ID.

auto_auth Block

This is where we define how Vault Agent should log in.

151

method

• Specifies the auth method—in our case, AppRole.

• The mount_path must match where you enabled AppRole in
Vault.

role_id_file_path & secret_id_file_path

• These files must contain the Role ID and Secret ID. These are
provided at deployment time (e.g., by CI/CD).

sink Block

This tells Vault Agent where to store the generated client token.

sink "file" {
 config = {
 path = "/etc/vault/token.txt"
 }
}

The app (or Vault Agent itself) can use this token to interact with
Vault for other operations.

template Block

This is where Vault Agent shines.

You specify:

• source: A template file containing the Vault secrets syntax.

• destination: Where to write the rendered file.

Example template (db-creds.tpl):

152

DB_USER={{ with secret

"myapp/webapp/dbcreds" }}{{ .Data.data.username }}{{

end }}
DB_PASS={{ with secret

"myapp/webapp/dbcreds" }}{{ .Data.data.password }}{{

end }}

Once Vault Agent runs, it fetches the secrets and writes them as:

DB_USER=app_user
DB_PASS=SuperSecret123

Lab Setup: Let’s Make It Real

Step 1: Start Vault Container
We'll reuse the kv-v2 secrets engine from myapp path and
AppRole setup from the previous chapter. Let’s begin by starting
the standalone Vault container using the command below: Make
sure you are at the top folder of the cloned repo.

docker run -d --rm \
 -p 8200:8200 \
 -v $(pwd)/vault-data/config:/vault/config \
 -v $(pwd)/vault-data/file:/vault/file \
 -v $(pwd)/vault-data/logs:/vault/logs \
 -v $(pwd):/home/vault/vault-beginner \
 --cap-add=IPC_LOCK \
 --name vault-dev \
 hashicorp/vault:latest server

Step 2: Attach to the Vault Container
Execute the following command to connect to the running Vault
container:

153

docker exec -it vault-dev /bin/sh

Once you're inside the container, set the Vault address by exporting
it as an environment variable. This ensures the Vault CLI knows
where to send requests.

export VAULT_ADDR='http://127.0.0.1:8200'

Step 3: Unseal the Vault
Vault is sealed by default for security. To unseal it, you need to
provide at least three unseal key shares from the initialization step
in Chapter 3.

Run the following command three times, each time providing one
unseal key when prompted:

vault operator unseal

Paste a different unseal key each time. After the third key, Vault will
be unsealed and ready to use.

Step 4: Login to Vault
Login as root

vault login <your-root-token>

(Replace <your-root-token> with your actual root token you have
received when you performed the vault operator init.)

154

Setp 5: Get Role ID
Now let’s fetch the Role ID by running the following command.
Once you have it, paste just the Role ID into the file located at
chapter-20/role_id.txt

vault read auth/approle/role/myapp/role-id

the output will be like below

Step 6: Generate Secret ID
Now let’s generate the Secret ID by running the following
command.
Once you receive it, copy just the Secret ID and save it inside
chapter-20/secret_id.txt file.

vault write -f auth/approle/role/myapp/secret-id

155

Step 7: Verify db.env and token.txt files
You’ll also notice a file named d̀b.env ̀and t̀oken.txt ̀inside the
c̀hapter-20 ̀directory. These files should be empty initially. Once the
Vault Agent starts, it will automatically populate these files with the
token and credentials autometically from Vault server. Go ahead
and open it now to confirm that it’s currently empty.

Step 8: Create Credential Template and
Agent Config File
First, let’s create the credentials template file with below code
snippet and store it inside chapter-20/db-creds.tpl

DB_USER={{ with secret

"myapp/webapp/dbcreds" }}{{ .Data.data.username }}{{

end }}
DB_PASS={{ with secret

"myapp/webapp/dbcreds" }}{{ .Data.data.password }}{{

end }}

For the vault agent config file, use below config and save it at
chapter-20/vault-agent.hcl location.

exit_after_auth = false

pid_file = "/tmp/vault-agent.pid"

auto_auth {

 method "approle" {

 mount_path = "auth/approle"

 config = {

 role_id_file_path = "/home/vault/vault-

beginner/chapter-20/role_id.txt"

156

 secret_id_file_path = "/home/vault/vault-

beginner/chapter-20/secret_id.txt"

 remove_secret_id_file_after_reading = false

 }

 }

 sink "file" {

 config = {

 path = "/home/vault/vault-beginner/chapter-

20/token.txt"

 }

 }

}

template {

 source = "/home/vault/vault-beginner/chapter-

20/db-creds.tpl"

 destination = "/home/vault/vault-beginner/chapter-

20/db.env"

}

To speed up the hands-on experience, we've already created those
files for you and placed them inside the chapter-20 folder.

Step 9: Stop vault standalone container
Now that all the configuration is in place, you’ll need the Vault Agent
binary to get things going. But don’t worry—you don’t have to
install anything manually. We’ve already prepped everything for you
in a Docker-friendly way.

Instead of running Vault Agent directly, we’ll start it inside a
container. And to make sure it can talk to the Vault server, we’ll

157

bring both up using Docker Compose—this way, they’re on the
same network, and communication between them just works.

So first, stop the standalone Vault server container using the below
command.

docker stop vault-dev

Step 9: Start vault stack
Let’s start the full stack (Vault Server + Vault Agent) but first go
inside the chapter-20 directory and issue the below command.

docker compose up

This will start the two containers, one for vault server and other for
the vault agent.

When you run this command, Docker starts in attached mode—
meaning all logs from the services will stream directly to your
terminal. Because of that, you won't get your shell prompt back
right away.

Let it run as is for couple of seconds.

After a few seconds, you’ll likely see an error saying that Vault is
sealed. That’s completely normal.

Now, open another terminal window and attach to the Vault
container to unseal it.

Step 10: Attach to the Vault Container

docker exec -it vault-dev /bin/sh

158

Inside the container, set the Vault address in env variable:

export VAULT_ADDR='http://127.0.0.1:8200'

Step 11: Unseal the Vault
Vault is sealed by default for security. To unseal it, you need to
provide at least three unseal key shares from the initialization step
in Chapter 3.

Run the following command three times, each time providing one
unseal key when prompted:

vault operator unseal

Paste a different unseal key each time. After the third key, Vault will
be unsealed and ready to use.

Step 12: Verify the db.env file
Once Vault is unsealed, the Vault Agent (running in the first tab)
will automatically authenticate using the Role ID and Secret ID, fetch
the secrets, and write them to the db.env file.

You’ll also see a log confirmation in the first tab—something like
below. Pay attention to the very last line in the screenshot.

159

That means everything worked! Secrets delivered, no hands
required.

Final Result
Your secrets now live inside a db.env like:

DB_USER=app_user

DB_PASS=SuperSecret123

And your application can source this file without ever knowing Vault
exists.

Step 16: Shutdown lab
Once you're done with your practice, it's time to shut down our lab
setup (Vault server and vault agent). To stop and clean up the
running containers, simply press CTRL + C on the first terminal and
after that run below command.

160

docker compose down

This will gracefully stop both services and remove the associated
containers and network. Don’t worry, your Vault data remains safe!
It’s stored in persistent storage, so it won’t be lost.

Real-World Use Cases
• Containerized apps without native Vault integration

• Traditional apps expecting .env files

• High-security systems with no outbound internet

Summary:
In this chapter, you leveled up your Vault automation game.

We explored how Vault Agent can remove the manual burden of
fetching secrets by automatically authenticating with Vault using
AppRole, retrieving secrets, and writing them to a local file in a
format your application can use.

You configured:

• A template to render secrets from Vault into an environment
file (db.env)

• A Vault Agent config that handles authentication and token
management

• A Docker Compose setup that runs both Vault and Vault
Agent in an isolated network

Once everything was in place, you saw how Vault Agent:

• Automatically logs in using Role ID and Secret ID

161

• Retrieves secrets from Vault

• Populates the db.env file without restarting or manual
intervention

This chapter shows the real power of automation—perfect for
legacy apps that can't speak to Vault directly, and a great way to
keep secrets in sync without writing a line of glue code.

162

Chapter 21: Transit Secrets
Engine - Encryption as a Service

 Vault isn’t just a secure storage locker for your secrets. It can
also act as a cryptographic service encrypting and decrypting data
without ever storing it. This is the superpower of the Transit
Secrets Engine. With it, Vault offers encryption as a service: your
application sends data, Vault encrypts or decrypts it, and your
application handles the storage.

Vault never saves your data. It just performs the transformation.

In this chapter, we’ll go in-depth on:

• Setting up the Transit engine.

• Creating encryption keys.

• Encrypting and decrypting data.

• Signing and verifying data.

• Real-world use cases.

Why Transit?
Before you reach for client-side encryption libraries, here’s what
Vault’s Transit engine brings to the table:

• Centralized key management: Rotate, revoke, and control
keys from a single place.

• No data persistence: Vault never stores plaintext or
ciphertext. It simply encrypts/decrypts on request.

163

• Secure APIs: Your app doesn't need to manage keys, just
interact with Vault.

• Compliance-friendly: Audit logs track access to keys and
operations performed.

Ideal for:

• Tokenization of sensitive fields (e.g card numbers, Customer
PII etc etc).

• Database field-level encryption.

• Signing and verifying data blobs.

Let’s do some hands-on practice.

Step 1: Start Vault Container
Let’s begin by starting the standalone Vault container using the
command below: Make sure you are at the top folder of the cloned
repo.

docker run -d \

 -p 8200:8200 \

 -v $(pwd)/vault-data/config:/vault/config \

 -v $(pwd)/vault-data/file:/vault/file \

 -v $(pwd)/vault-data/logs:/vault/logs \

 -v $(pwd):/home/vault/vault-beginner \

 -e VAULT_ADDR="http://localhost:8200/" \

 --cap-add=IPC_LOCK \

 --name vault-dev \

 hashicorp/vault:latest server

164

Step 2: Attach to the Vault Container
Execute the following command to connect to the running Vault
container:

docker exec -it vault-dev /bin/sh

Once you're inside the container, set the Vault address by exporting
it as an environment variable. This ensures the Vault CLI knows
where to send requests.

export VAULT_ADDR='http://127.0.0.1:8200'

Step 3: Unseal the Vault
Vault is sealed by default for security. To unseal it, you need to
provide at least three unseal key shares from the initialization step
in Chapter 3.

Run the following command three times, each time providing one
unseal key when prompted:

vault operator unseal

Paste a different unseal key each time. After the third key, Vault will
be unsealed and ready to use.

Step 4: Login to Vault
Login as root

vault login <your-root-token>

165

(Replace <your-root-token> with your actual root token you have
received when you performed the vault operator init.)

Step 5: Enable the Transit Engine
Let’s enable the Transit secrets engine using its default mount path.
Run the following command inside the Vault container:

vault secrets enable transit

This mounts the Transit engine at the default path transit/, allowing
us to use Vault for cryptographic operations like encryption,
decryption, and key rotation—without storing any data.

You can also mount it at a custom path:

vault secrets enable -path=enc transit

You will see the output like below.

Make sure to use the /̀transit ̀path in all the subsequent commands
throughout this chapter. If you’ve chosen to mount the Transit
secrets engine at a custom path instead, don’t forget to update the
commands accordingly to reflect your specific mount path.

166

Step 6: Create an Encryption Key
Now that the Transit secrets engine is enabled, it’s time to create a
named encryption key that Vault will use to perform cryptographic
operations. Think of this as defining a logical key inside Vault. Vault
manages the actual key material for you behind the scenes. This key
will be used to encrypt and decrypt data via the API without
exposing the raw key to your application. You can give the key any
name (e.g., c̀ustomer-data)̀, and Vault will maintain all the
versioning, rotation, and security controls for it. To create it, simply
run the below command.

vault write -f transit/keys/my-encryption-key

Here’s what it does:

• Creates a key named my-encryption-key.

• The key will be used to encrypt and decrypt data.

• You can create multiple keys, each for a different purpose or
app.

Once the command runs successfully, you’ll see the configuration
details for the newly created key, including its settings and available
options, as shown below.

167

Encrypting Data
Now that your encryption key is ready, let’s put it to use. Vault’s
Transit Secrets Engine doesn’t store any data—it’s purely for
cryptographic operations. That means you send your plaintext data
to Vault, and it responds with ciphertext, which you can safely store
in your database or elsewhere. This separation of concerns keeps
your application logic simple while offloading the complexity and
risk of encryption to Vault. To encrypt, you’ll pass your plaintext as
base64-encoded input along with the key name, and Vault will
return an encrypted value you can store with confidence.

vault write transit/encrypt/my-encryption-key \

 plaintext=$(echo -n "MySecretMessage" | base64)

Explanation:

• Vault expects plaintext as base64-encoded string.

• The encrypted result will be returned as ciphertext.

168

Example output:

{

 "data": {

 "ciphertext": "vault:v1:IoCzjV..."

 }

}

Decrypting Data
Decrypting is just as straightforward as encrypting—Vault handles
the heavy lifting for you. When you need to retrieve and use your
data, simply send the previously encrypted ciphertext back to Vault,
along with the name of the encryption key used. Vault will verify the
request, decrypt the data, and return the original plaintext (base64-
encoded). Since Vault doesn't store your data, only the encryption
keys, this keeps your system lightweight and secure.

vault write transit/decrypt/my-encryption-key \

 ciphertext="vault:v1:IoCzjV..."

Output:

{

 "data": {

 "plaintext": "TXlTZWNyZXRNZXNzYWdl"

 }

}

Decode the base64 output:

echo "TXlTZWNyZXRNZXNzYWdl" | base64 -d

169

Output:

MySecretMessage

Key Rotation
Key rotation is one of the most powerful features of Vault’s Transit
engine. Over time, rotating your encryption keys enhances security
by limiting the exposure window of any single key. Vault makes this
process painless. When you rotate a key, it generates a new version
but retains the old ones for decrypting existing data—so nothing
breaks. Your app doesn’t need to re-encrypt older data unless you
explicitly want to rewrap it with the latest key version. This
versioned approach gives you the flexibility to keep things secure
without disrupting your workflows. And yes, all key versioning and
rotation history is fully auditable.

Use below command to rotate your key

vault write -f transit/keys/my-encryption-key/rotate

170

In the output, take note of the l̀atest_version ̀field—it should now
show the value 2̀.̀ This means Vault has generated a second version
of the key for that path. From this point on, all new encryption
operations will use version 2 by default, while Vault will still retain
the previous version(s) to support decryption of older data.

When you rotate a key in Vault, previously encrypted data doesn’t
become obsolete or unreadable. Vault keeps all older key versions
so it can still decrypt any data encrypted using those earlier
versions. For example, if your data was encrypted with key version 1,
Vault will automatically detect that and use the right key version to
decrypt it even after a rotation.

You might have noticed the encrypted string begins with a prefix
like vault:v1:. This is Vault’s way of tagging the encryption
version used for that data. The v1 part indicates that version 1 of
the key was used during encryption. This prefix helps Vault

171

determine which version of the key to use when decrypting,
ensuring everything stays consistent and backwards-compatible.

Absolutely. Here's a refined, instructional book-style version of that
explanation:

Step 7: Creating a Transit Key for Digital
Signatures
Not all keys are meant for encryption and decryption. In many
systems, data integrity and authenticity are just as important.
Sometimes even more so. Vault supports this through the use of
signing keys, and for that purpose, it provides support for
asymmetric key types such as ed25519.

The ed25519 key type does not support encryption or decryption.
Instead, it is designed specifically for signing operations. When you
use an ed25519 key with the Transit secrets engine, Vault enables
your applications to sign arbitrary data. This allows external systems
or services to later verify the signature using a public key,
confirming both the origin of the message and that its contents
have not been altered.

This is particularly useful in scenarios where you need to:

• Sign structured data such as tokens or audit events.

• Generate digital signatures for messages or payloads.

• Prove the origin of a request in distributed systems.

• Integrate with clients or services that require signature-based
verification.

172

The private signing key never leaves Vault. Signing operations are
performed securely within the Vault server, minimizing the risk of
key exposure. Vault can also expose the corresponding public key,
which can be distributed safely to clients for verification purposes.

In short, if your goal is to prove who sent the data and that it
wasn’t modified, rather than to encrypt or decrypt it, you should
use a key type such as ed25519. This ensures cryptographic
assurance of authenticity, backed by the secure storage and
controlled access that Vault provides.

We’ll now proceed to create an ed25519 key and use it to sign and
verify data.

Execute the below command to start the creation of the signing key.

vault write -f transit/keys/my-signing-key

type=ed25519

In this example, we're creating a new key named my-signing-key
with the type set to ed25519. The output would be like below.

173

Now that we have a signing key ready, let’s walk through how to use
it for digital signing and verification.

Signing Data
Signing data using Vault’s Transit engine allows you to generate a
cryptographic signature for a piece of data without ever exposing
the private key. It’s ideal when you need to verify the integrity or
authenticity of a message, payload, or file.

Before sending your data to Vault, it must be base64-encoded, Vault
expects the input in that format to ensure safe transport over the
API.

Once encoded, you pass it to the Transit engine, and Vault returns a
cryptographic signature. This way, your private keys stay securely
tucked away inside Vault, and your application can confidently
validate signed data without ever needing direct access to the keys.

174

Run the below command to sign your data

vault write transit/sign/my-signing-key \

 input=$(echo -n "important_data" | base64)

You’ll get a signature like:

Verifying a Digital Signature

Once data has been signed using a Vault Transit key—such as one
created with type=ed25519 you can verify the authenticity of that
signature using the transit/verify endpoint. This step is crucial
when you want to ensure that the data has not been tampered with
and that it was indeed signed using a trusted key.

During verification, Vault takes the original input data and the
provided signature and checks if they match using the
corresponding public key. If the signature is valid, Vault responds
with valid: true, giving you confidence in both the integrity and
origin of the data.

Just like signing, the input data must be base64-encoded before
sending it to the API. This process is often used in multi-service
systems to verify tokens, messages, or sensitive payloads where
security and trust are critical.

175

Run the below command to verify the signature

vault write -format=json transit/verify/my-signing-

key \

 input=$(echo -n "important_data" | base64) \

 signature="vault:v1:pSNQC...."

This returns:

Step 8: Access Control with Policies
Throughout this chapter, we’ve seen how powerful the Transit
Secrets Engine can be. We've created encryption keys, encrypted
and decrypted data, rotated those keys, signed payloads, and
verified signatures. Each of these operations—while technically
simple—must be strictly governed, especially in production
environments where multiple services interact with Vault.

This is where Vault policies come in.

Vault doesn’t just assume a service should be able to use a key
simply because it exists. Instead, every capability encrypt,

176

decrypt, sign, verify, rotate—is exposed through a specific API
endpoint. And access to each of these endpoints must be explicitly
allowed via policy.

Let’s connect this to what we’ve done so far:

• When we used the key to encrypt data, Vault hit the endpoint
transit/encrypt/my-encryption-key. To allow this
action, a policy must include a rule granting update capability
on that path.

• For decryption, we used transit/decrypt/my-
encryption-key, which again requires its own update
permission.

• When we rotated the key version using transit/keys/my-
encryption-key/rotate, that operation needed update
access on a different path.

• Similarly, signing with an ed25519 key involved calling
transit/sign/my-signing-key, and verifying used
transit/verify/my-signing-key.

In essence, Vault policies let you segment access by operation and
by key. This allows you to:

• Give encryption-only access to applications that store data.

• Restrict decryption access to backend services that process
sensitive data.

• Allow signing operations only to systems that produce tokens
or messages.

• Let verification be publicly accessible if needed, without
exposing the signing key.

177

This separation is not just best practice—it’s vital. If an encrypt-only
service is compromised, an attacker can’t decrypt data, rotate the
key, or sign payloads. It’s one of Vault’s most powerful security
principles: zero privilege without explicit permission.

So, as you build policies for your applications, think in terms of roles
and responsibilities. Who needs to encrypt? Who should decrypt?
Who’s allowed to rotate or sign? Define these in separate policies,
assign them to specific roles, and let Vault enforce the boundaries.

By combining Transit’s features with carefully scoped policies,
you’re not just managing secrets—you’re doing it securely, at scale,
and with confidence.

Example Policies for Transit Secret Engine
Below are some of the policies you can consider as your starting
point. These are designed to reflect the different operations we've
performed throughout the chapter and can be tailored based on
your application’s trust boundaries.

1. Encrypt-Only Policy

This policy allows services to encrypt data, but not decrypt it—ideal
for write-only workflows like logging or form submissions.

path "transit/encrypt/my-encryption-key" {

 capabilities = ["update"]

}

2. Decrypt-Only Policy

Useful for backend processors that need to read and handle
encrypted data but shouldn’t create or rotate keys.

178

path "transit/decrypt/my-encryption-key" {

 capabilities = ["update"]

}

3. Key Rotation Policy

This policy allows only specific users or automated maintenance
tools to rotate keys.

path "transit/keys/my-encryption-key/rotate" {

 capabilities = ["update"]

}

4. Sign-Only Policy

Grants permission to sign payloads with a specific key. This is useful
for token generators or internal services creating signed data.

path "transit/sign/my-signing-key" {

 capabilities = ["update"]

}

5. Verify-Only Policy

Perfect for public-facing or cross-service verification flows. You can
safely distribute this policy to services that need to confirm
authenticity but not sign or modify data.

path "transit/verify/my-signing-key" {

 capabilities = ["update"]

}

179

6. Full Admin Policy for a Key

If you’re building a superuser role (use with caution), this gives full
control over a single key, including its deletion.

path "transit/keys/my-encryption-key" {

 capabilities = ["create", "read", "update",

"delete", "list"]

}

These examples are just the starting point. Depending on how your
infrastructure is structured, you can mix, match, and scope policies
down even further. Vault’s flexibility with path-based access control
gives you full power to enforce least privilege—down to a single
action on a single key.

Real-World Use Cases
1. Credit Card Encryption

Encrypt card numbers before storing in database.

2. Tokenization
Use encryption + encoding to create tokens from sensitive
values.

3. Secrets-as-a-Service
Let internal tools ask Vault to encrypt and decrypt sensitive
configs.

4. Digital Signatures
Sign data without sharing private keys across services.

180

Optional - To List Keys
 Once you've started creating encryption keys in the Transit
engine, you might want to check which keys are available. Vault
makes this easy. You can list all the keys stored in the Transit engine
using a simple vault list command. This gives you an overview
of all active keys managed by Vault—useful for audits,
housekeeping, or just keeping track of what's in play.

Run command:

vault list transit/keys

the output would be like below.

Optional - To Get Key Details
 Need to know more about a specific key—like its type,
creation time, or the number of key versions? Use the vault read
command to fetch the key’s metadata. This shows you critical
information including whether the key supports deletion, whether
it's set to auto-rotate, and more. It’s especially handy for
understanding key lifecycle and verifying that everything’s
configured as expected.

Run command:

vault read transit/keys/my-encryption-key

181

The output would be like below.

Summary
Vault’s Transit engine is a powerful way to perform cryptographic
operations without exposing or managing raw keys. It decouples
your app from key management complexity while offering fine-
grained control and auditing.

182

Chapter 22: Understanding Vault
Audit Devices

In a secure system, knowing who did what is as important as
protecting what can be done. Vault, being a system of secrets, takes
this seriously.

Vault doesn't store an activity history by default. To know what
happened inside your Vault, who accessed what secret, when, and
how, you must enable audit devices.

Think of audit devices as Vault’s black box recorder.

What Are Audit Devices?
An audit device in Vault is a configured sink where every request
and response to the Vault server gets logged, before and after Vault
handles it.

Key Characteristics:

• Immutable and append-only

• Logs both request and response payloads

• Logs are not stored in Vault, they go to an external system

• Each configured device receives a full audit log entry

Audit logging is disabled by default. You must explicitly enable it.

183

Why Enable Audit Logging?
• Security visibility: Know who accessed which secrets

• Compliance: Regulatory requirements like SOC2, ISO 27001,
HIPAA

• Forensics: Investigate a leaked secret or suspicious access

• Monitoring: Feed logs into SIEM systems for real-time
alerting

Vault does not provide a built-in log viewer or dashboard, you ship
the logs elsewhere for storage and analysis.

Types of Audit Devices
Audit Device Description

File
Writes logs to a local file. Easy for standalone servers or

testing.

Syslog
Forwards logs to the system’s syslog service (e.g., journald,

rsyslog).

Socket Sends logs to a Unix socket. Often used with log shippers.

HTTP
Sends logs as HTTP POST requests to a remote service.

Useful for centralized logging pipelines.

Kafka (Plugin) Enterprise plugin that streams logs into Kafka.

Datadog

(Plugin)
Community or enterprise plugin that sends to Datadog.

For this chapter, we’ll use the file audit device, as it’s the most
common starting point.

184

Audit Log Format
Each log entry is a JSON object with fields looks like:

{

 "time": "2025-04-14T17:22:00.123456Z",

 "type": "request",

 "auth": {

 "client_token": "hmac-sha256:...",

 "accessor": "hmac-sha256:...",

 "display_name": "approle"

 },

 "request": {

 "id": "b9b3e92b-...",

 "operation": "read",

 "path": "secret/data/production/api-key",

 "remote_address": "10.0.0.15"

 }

}

HMAC Protection: Vault never writes secrets or plaintext tokens to
logs. Sensitive fields (like token, accessor, paths, and response data)
are hashed with HMAC. Even if the logs leak, they don't leak
secrets.

Let’s set up our lab before we start our hands-on exercises.

Step 1: Start Vault Container
Let’s begin by starting the standalone Vault container using the
command below: Make sure you are at the top folder of the cloned
repo.

docker run -d \

185

 -p 8200:8200 \

 -v $(pwd)/vault-data/config:/vault/config \

 -v $(pwd)/vault-data/file:/vault/file \

 -v $(pwd)/vault-data/logs:/vault/logs \

 -v $(pwd):/home/vault/vault-beginner \

 -e VAULT_ADDR="http://localhost:8200/" \

 --cap-add=IPC_LOCK \

 --name vault-dev \

 hashicorp/vault:latest server

Step 2: Attach to the Vault Container
Execute the following command to connect to the running Vault
container:

docker exec -it vault-dev /bin/sh

Once you're inside the container, set the Vault address by exporting
it as an environment variable. This ensures the Vault CLI knows
where to send requests.

export VAULT_ADDR='http://127.0.0.1:8200'

Step 3: Unseal the Vault
Vault is sealed by default for security. To unseal it, you need to
provide at least three unseal key shares from the initialization step
in Chapter 3.

Run the following command three times, each time providing one
unseal key when prompted:

vault operator unseal

186

Paste a different unseal key each time. After the third key, Vault will
be unsealed and ready to use.

Step 4: Login to Vault
Login as root

vault login <your-root-token>

(Replace <your-root-token> with your actual root token you have
received when you performed the vault operator init.)

Step 5: Pick a secure path to store logs
Before enabling an audit device, Vault needs a location to store the
generated logs. Let’s begin by selecting a directory for this purpose.
In our case, we’ll use /vault/logs as the designated path inside
the Vault container.

Outside the container, this directory is mapped to vault-
beginner/vault-data/logs on your local machine.

Make sure this directory exists and is writable by Vault before
proceeding. This setup ensures that audit logs persist even if the
container is restarted.

Step 6: Set the Correct Folder Permissions
To allow Vault to write audit logs to the /vault/logs directory, we
need to ensure that it has the proper ownership inside the
container.

187

Attach to the Vault container, once inside the container, run the
following command to change the ownership:

chown vault:vault /vault/logs

This sets the Vault user and group as the owner of the log directory,
ensuring Vault has the necessary write permissions. After this step,
you're ready to enable the audit device.

Important: Logs are append-only. Never delete or edit them
manually. Rotate using logrotate.

Step 7: Enabling the Audit Device
To enable auditing, we instruct Vault to log each request and
response to a specified audit device—in our case, a file on disk. To
activate this feature, we'll enable the file-based audit device and
point it to the /vault/logs/audit.log file inside the container.

Once enabled, Vault will start appending structured log entries for
each API operation. These logs are extremely detailed and include
timestamps, request paths, client identity, and response status—
making them essential for understanding what’s happening inside
your Vault cluster.

vault audit enable file \

 file_path=/vault/logs/audit.log

You’ll see:

Success! Enabled the file audit device at: file/

188

You can verify the enabled audit devices by executing below
command:

vault audit list

Output:

Path Type Description

---- ---- -----------

file/ file n/a

Step 8: Generate Some Logs
Run a quick command:

vault kv get api-exp/app1

Then view the audit log:

cat /vault/logs/audit.log

Each entry will show type:request and type:response for every
command Vault handles.

Please note, using cat alone just dumps the file contents, which is
okay for small logs but when you’re dealing with Vault’s audit logs
(which can get huge), you'll want more control.

Here are some useful options and alternatives to make your cat
command more effective when viewing /vault/logs/audit.log:

Command / Option Purpose Example

cat

/vault/logs/au

Displays the entire log file (not

ideal for large logs).

cat

/vault/logs/au

189

Command / Option Purpose Example

dit.log dit.log

tail -n <N>
Shows the last N lines of the

log. Good for recent activity.

tail -n 50

/vault/logs/au

dit.log

tail -f
Continuously displays new log

entries in real-time (live view).

tail -f

/vault/logs/au

dit.log

tail -n <N> -f
Shows last N lines and follows

new logs.

tail -n 50 -f

/vault/logs/au

dit.log

head -n <N>

Displays the first N lines of the

log. Useful for seeing earliest

entries.

head -n 20

/vault/logs/au

dit.log

grep

"<keyword>"

Filters log lines by keyword

(case-sensitive).

grep "transit"

/vault/logs/au

dit.log

grep -i

"<keyword>"

Case-insensitive search for

keyword.

grep -i

"LOGIN"

/vault/logs/au

dit.log

grep -A <N>

"<keyword>"

Shows N lines after a match.

Helpful for context.

grep -A 3

"login"

/vault/logs/au

dit.log

grep -B <N>

"<keyword>"
Shows N lines before a match.

grep -B 3

"login"

/vault/logs/au

dit.log

190

Optional: Configure Audit Log Rotation
Vault does not automatically rotate its audit log, which means the
log file can grow indefinitely over time. To manage this, you can use
the logrotate utility to rotate logs safely and efficiently.

Start by creating a logrotate configuration file:

sudo nano /etc/logrotate.d/vault-audit

Add the following configuration:

/vault/logs/audit.log {

 daily

 rotate 7

 compress

 missingok

 notifempty

 create 0640 vault vault

 postrotate

 systemctl kill -HUP vault

 endscript

}

Here’s a breakdown of what this does:

• daily: Rotates the log every day.

• rotate 7: Keeps the last 7 log files before deleting old ones.

• compress: Compresses older logs to save space.

• missingok: Doesn’t throw an error if the log file is missing.

• notifempty: Skips rotation if the file is empty.

191

• create 0640 vault vault: Creates a new log file with proper
permissions.

• postrotate / endscript: Sends a HUP signal to Vault,
prompting it to close the current log and open a new one.

This setup ensures that Vault's audit logging remains clean,
controlled, and doesn't fill up your disk over time.

Audit Log Permissions & Security
• Store logs in a tamper-evident location (e.g., remote S3

bucket, read-only volume)

• Use a log forwarder (e.g., FluentBit, Filebeat) to ship logs off-
box

• Lock down file access (chmod 640, only readable by Vault and
log collector)

• Regularly monitor audit logs for unusual paths or access
patterns

Recap
Audit devices are Vault’s window into user behavior. They record
every request and response interaction without ever logging
secrets. You learned:

• What audit devices are and why they matter

• Different types: file, syslog, HTTP, Kafka

• How to configure a file-based audit device

• How to monitor and rotate your logs securely

192

You should now have full visibility into what happens inside your
Vault.

193

Chapter 23: Revoking and
Regenerating the Root Token

In a production Vault deployment, the root token is the most
powerful credential in the system. It is designed to bypass all
policies, granting full administrative access. While this makes it
essential during setup and bootstrapping, retaining the root token
after initial configuration introduces significant risk.

In this chapter, we’ll cover:

1. Why revoking the root token is strongly recommended

2. How to revoke the root token securely

3. How to regenerate the root token using quorum

4. Enabling a stable operational authentication method (e.g.,
userpass) beforehand

5. Understanding mlock, the Vault data directory, and best
practices

6. A complete walkthrough with all commands included

Why Revoke the Root Token?
The root token:

• Has unrestricted access to Vault.

• Bypasses policies and controls.

• If leaked or misused, compromises the entire Vault cluster.

194

Root Token in Production = Liability

Best practice:

• Use it to bootstrap Vault.

• Create real users and assign policies.

• Then revoke it.

Regeneration of the root token should be a deliberate, audited,
multi-party operation, not a casual fallback.

Pre-Requisite: Enable the userpass Auth
Method
Before revoking the root token, ensure you have an alternate
administrative login.

Here, we'll use the built-in userpass auth method.

Step 1: Enable userpass Auth

vault auth enable userpass

Step 2: Create an Admin Policy

Create a file admin-policy.hcl with below content:

path "*" {

 capabilities = ["create", "read", "update",

"delete", "list", "sudo"]

}

Create the policy using the admin-policy.hcl:

195

vault policy write admin admin-policy.hcl

Ensure you are inside the folder where you saved the admin-
policy.hcl

Step 3: Create a Vault Admin User

vault write auth/userpass/users/vaultadmin \

 password="123456" \

 policies="admin"

Login and verify:

vault login -method=userpass username=vaultadmin

password=123456

The output of last there commands will be like below.

196

Now you're ready to retire the root token.

Revoking the Root Token
If you're logged in as root and want to revoke your own token:

vault token revoke -self

Or to revoke a specific root token:

vault token revoke <root_token>

Before revoking, always confirm another fully privileged user or
group has operational access to Vault.

Regenerating the Root Token (When
Needed)
Vault supports a secure, quorum-based process to regenerate the
root token. This process ensures that no single person can
generate the root token alone.

Step 1: Begin Root Token Regeneration Process

Start the root token generation process:

vault operator generate-root -init

You will receive two important values:

• One-Time OTP (OTP): A short-lived password used to encrypt
the new root token.

197

• Nonce: A unique identifier for this regeneration attempt. It
must be passed with every unseal key submission.

What is OTP and Nonce?
The OTP is used to encrypt the root token. You’ll need it at the end
to decrypt the result. The Nonce uniquely identifies this
regeneration attempt. Without it, Vault won't accept unseal key
submissions.

Example output:

Step 2: Provide Unseal Key Shares (With Nonce)

Each key holder submits their unseal key, along with the nonce:

vault operator generate-root -nonce=<nonce>

<unseal_key>

Repeat this step with each unique key until the configured key
threshold is met (e.g., 3 of 5 unseal keys).

198

Once quorum is reached, Vault outputs the Encoded Root Token.

Step 3: Decrypt the Root Token (Using OTP)

Vault returns the token like this:

Encoded Token: xxxxxxxxxx

Now decrypt the encoded token using the OTP you received earlier:

vault operator generate-root -decode <encoded_token>

-otp <One-time-otp>

You’ll then receive the actual root token.

199

Recap
• The root token should not be kept around in production

systems.

• Always create admin users and test their login before
revoking the root token.

• The root token can be regenerated using quorum-based
approval from unseal key holders.

• Vault’s data directory and mlock settings are critical for
performance and security.

200

Chapter 24: Production
deployment of Hashicorp Vault
on Ubuntu LTS

In the playground, we spun up Vault with a single command. In
production? Not so fast.

Deploying Vault in the real world means locking it down,
bootstrapping it correctly, and setting it up to survive power
outages, restarts, and mistakes.

This chapter walks you through setting up HashiCorp Vault on an
Ubuntu LTS server, with or without a domain name, securely and
correctly.

What You’ll Learn
• Installing Vault from the official repository

• Difference between IP-based and domain-based access

• Vault configuration anatomy and key files

• Importance of memory locking (mlock)

• File-based storage with Raft backend

• TLS configuration

• Managing Vault as a systemd service

• Vault initialization, unsealing, and best practices

201

IP vs Domain, What Changes in Real-World
Setup?
Vault is an HTTP API server at its core. It doesn’t require a domain
name to run, but how you deploy it affects TLS, automation, and
best practices.

Criteria IP-Based Setup Domain-Based Setup

TLS Certificate
Self-signed or internal

CA
Public CA (Let’s Encrypt, etc.)

api_addr /

cluster_addr

IP-based (e.g.,

https://10.0.0.10:8200)

FQDN-based (e.g.,

https://vault.company.com)

Automation

(CI/CD, Vault

Agent)

Slightly harder to

manage
Easier via DNS resolution

Vault UI

Availability

Works but browser

warns about TLS
Secure and smooth

You can run Vault with only an IP and a self-signed certificate. But
for enterprise setups or developer convenience, it’s strongly
recommended to use a fully qualified domain name (FQDN) and
proper TLS.

Step 1: Install Vault (Official Binary)
Install Vault from HashiCorp’s APT repository:

sudo apt update && sudo apt install -y gnupg curl

software-properties-common

curl -fsSL https://apt.releases.hashicorp.com/gpg | \

https://10.0.0.10:8200/
https://vault.company.com/

202

 sudo gpg --dearmor -o

/usr/share/keyrings/hashicorp-archive-keyring.gpg

echo "deb [signed-by=/usr/share/keyrings/hashicorp-

archive-keyring.gpg] \

 https://apt.releases.hashicorp.com $(lsb_release -

cs) main" | \

 sudo tee /etc/apt/sources.list.d/hashicorp.list

sudo apt update;

sudo apt install vault;

Step 2: Prepare Folders & TLS

Vault Folders

Vault doesn’t create its own directory structure. You must define it:

sudo mkdir -p /etc/vault.d /opt/vault/data

/opt/vault/logs;

sudo chown -R vault:vault /opt/vault;

• /etc/vault.d → All config files go here

• /opt/vault/data → Where Vault stores secrets when using
integrated Raft storage

• /opt/vault/logs → Optional log directory if using file-
based audit logs

Vault Data Folder Explained
When using the Raft storage backend, Vault persists all data—
including secrets, policies, and leases—inside the data directory. It
is a critical directory and must be backed up regularly using
snapshot APIs.

203

TLS Setup

With IP (Self-Signed)

Use OpenSSL:

openssl req -x509 -nodes -days 365 \

 -newkey rsa:2048 \

 -keyout /etc/vault.d/vault.key \

 -out /etc/vault.d/vault.crt \

 -subj "/CN=<<WRITE_YOUR_IP_ADDRESS_HERE>>";

sudo chown vault:vault /etc/vault.d/vault.*;

With Domain (Recommended)

sudo apt install certbot;

sudo certbot certonly --standalone -d

<<WRITE_YOUR_FQDN_HERE>>;

Then:

sudo cp

/etc/letsencrypt/live/<<WRITE_YOUR_FQDN_HERE>>/fullch

ain.pem /etc/vault.d/vault.crt;

sudo cp

/etc/letsencrypt/live/<<WRITE_YOUR_FQDN_HERE>>/privke

y.pem /etc/vault.d/vault.key;

sudo chown vault:vault /etc/vault.d/vault.*;

Step 3: Vault Configuration Explained
Create a file at /etc/vault.d/vault.hcl:

204

ui = true

log_level = "info"

storage "raft" {

 path = "/opt/vault/data"

 node_id = "vault-node-1"

}

listener "tcp" {

 address = "0.0.0.0:8200"

 tls_cert_file = "/etc/vault.d/vault.crt"

 tls_key_file = "/etc/vault.d/vault.key"

}

api_addr = "https://<<YOUR_IP_OR_FQDN_HERE>>:8200"

cluster_addr =

"https://<<YOUR_IP_OR_FQDN_HERE>>:8201"

disable_mlock = false

Breakdown of Key Config Items:

Key Description

ui = true Enables Vault’s browser interface

storage

"raft"
Uses Raft for HA-ready local storage

node_id Unique name of this Vault node

listener Defines network interface and TLS settings

api_addr How clients communicate with Vault (must match cert)

cluster_addr Used for internal cluster gossip

disable_mlock Set to false in production; read below

205

About mlock (Memory Lock)
Vault uses in-memory encryption and holds sensitive data in RAM.
Linux swaps out memory pages to disk under pressure, which is a
security nightmare for secrets.

The mlock syscall prevents memory from being swapped.

What Happens If You Don’t Use mlock?

• Vault will log a warning

• Secrets in memory could end up in disk swap

• Regulatory compliance may be violated

Step 4: Create Vault systemd Unit
Create /etc/systemd/system/vault.service:

[Unit]

Description=HashiCorp Vault

Requires=network-online.target

After=network-online.target

[Service]

User=vault

Group=vault

ProtectSystem=full

ProtectHome=read-only

PrivateTmp=yes

Capabilities=CAP_IPC_LOCK

CapabilityBoundingSet=CAP_IPC_LOCK

ExecStart=/usr/bin/vault server -

config=/etc/vault.d/vault.hcl

206

ExecReload=/bin/kill -HUP $MAINPID

KillMode=process

Restart=on-failure

LimitMEMLOCK=infinity

LimitNOFILE=65536

[Install]

WantedBy=multi-user.target

Then reload and start Vault:

sudo systemctl daemon-reexec;

sudo systemctl enable vault;

sudo systemctl start vault;

Step 5: Initialize and Unseal Vault
First, set the address (replace with your IP or domain):

export

VAULT_ADDR=https://<<YOUR_IP_OR_FQDN_HERE>>:8200;

export VAULT_CACERT=/etc/vault.d/vault.crt

Initialize Vault:

vault operator init -key-shares=5 -key-threshold=3 >

~/vault.init

Unseal Vault (you need 3 keys out of 5):

vault operator unseal <key1>

vault operator unseal <key2>
vault operator unseal <key3>

207

Step 6: Security and Hardening Checklist
Measure Description

TLS Everywhere Never run Vault without TLS, even locally

Memory Lock Prevent secrets from hitting disk swap

Firewall
Block everything except port 8200 (and 443 if reverse

proxy)

Audit Logging Enable file-based audit logging

Secrets Backups Use Raft snapshot API regularly

Limited Root Avoid running Vault CLI with root privileges

Cert Renewal Automate TLS cert renewals via cron or timer

Final Validation
If everything went well, visiting:

https://<<YOUR_IP_OR_FQDN_HERE>>:8200

Should show you the Vault UI.

Recap
In this chapter, you learned how to:

• Deploy Vault on an Ubuntu LTS server with Raft storage

• Secure it using TLS and memory locking

• Understand the Vault folder structure and key config
parameters

• Run it as a production-grade service using systemd

208

• Work with both IP-based and domain-based setups

You now have a Vault server that’s reliable, secure, and production-
ready.

209

Chapter 25: Production
Deployment of Hashicorp Vault
Using Docker

Docker is everywhere and it’s powerful, portable, and consistent. If
you’re managing microservices or orchestrating infrastructure
across environments, you’ve probably considered using Docker for
your Vault deployment.

And yes, it’s absolutely viable for production.

In this chapter, we’ll walk through everything you need to securely
run HashiCorp Vault in production using Docker:

• Why Docker for Vault

• Production-grade setup

• Static vs dynamic configuration

• Secure persistent storage

• TLS termination

• Deployment with or without a domain name

• Environment variable injection

• Memory locking and tuning

Why Docker for Vault?
Using Docker in production has some advantages:

• Simple packaging and portability

210

• Works on any host with Docker Engine

• Clean separation of concerns (Vault container, storage,
network)

• Works with orchestration tools like Docker Compose,
Kubernetes, or Nomad

But Docker does not make Vault magically production-ready.

You still need to:

• Set up secure storage

• Handle TLS correctly

• Configure auto-unsealing (if desired)

• Mount proper data volumes

• Harden access and audit

Let’s go step by step.

Step 1: Preparing the Host Machine
Install Docker on a Linux server, preferably Ubuntu LTS 24.04 or
later:

sudo apt update && sudo apt install -y docker.io

sudo systemctl enable docker

Create a working directory:

mkdir -p /opt/vault-prod/config /opt/vault-prod/data

/opt/vault-prod/logs

We’ll mount these into the container later:

211

• /config: Vault configuration file(s)

• /data: Vault’s persistent storage

• /logs: Optional logging output

Step 2: Create a Production Vault
Configuration File
Create /opt/vault-prod/config/vault.hcl:

ui = true

Storage backend: Raft

storage "raft" {

 path = "/vault/data"

 node_id = "vault-node-1"

}

Listener with TLS enabled

listener "tcp" {

 address = "0.0.0.0:8200"

 tls_cert_file = "/vault/config/certs/vault.crt"

 tls_key_file = "/vault/config/certs/vault.key"

}

api_addr = "https://<<YOUR_IP_OR_FQDN_HERE>>:8200"

cluster_addr =

"https://<<YOUR_IP_OR_FQDN_HERE>>:8201"

disable_mlock = false

Log level

log_level = "info"

212

disable_mlock = false ensures Vault memory is not swapped to
disk. You’ll need to allow CAP_IPC_LOCK when starting the
container.

Step 3: Vault Data Directory
Vault stores everything—secrets, leases, metadata—in the Raft
storage directory (/vault/data).

Best practices:

• Mount a dedicated volume for durability

• Regularly back it up (covered in snapshot chapter)

• Ensure correct permissions (vault:vault or 100:100)

sudo chown -R 100:100 /opt/vault-prod/data

Step 4: TLS Certificates
Vault requires TLS in production to ensure secure communication
between clients and the Vault server.

You can:

• Use Let’s Encrypt (with a public domain)

• Use self-signed certificates for internal deployments or IP-
based access

Create a folder to store your certs:

mkdir -p /opt/vault-prod/config/certs

213

Generating Self-Signed TLS Certificates

You can create a self-signed TLS certificate using OpenSSL for:

• Internal FQDN (e.g., vault.internal.domain)

• Static IP address (e.g., 192.168.1.10)

Create a file named vault.cnf:

[req]

default_bits = 2048

prompt = no

default_md = sha256

distinguished_name = dn

req_extensions = req_ext

x509_extensions = v3_ca

[dn]

C = US

ST = CA

L = San Francisco

O = Vault Self-Signed

OU = Vault Dev

CN = vault.internal.domain

[req_ext]

subjectAltName = @alt_names

[v3_ca]

subjectAltName = @alt_names

basicConstraints = critical,CA:TRUE

keyUsage = critical, digitalSignature,

keyEncipherment

extendedKeyUsage = serverAuth

[alt_names]

DNS.1 = vault.internal.domain

214

IP.1 = 192.168.1.10

Now generate the key and certificate:

openssl req -x509 -nodes -newkey rsa:2048 \

 -keyout /opt/vault-prod/config/certs/vault.key \

 -out /opt/vault-prod/config/certs/vault.crt \

 -days 365 \

 -config vault.cnf

This command:

• Generates a 2048-bit RSA private key

• Issues a self-signed certificate valid for 1 year

• Supports both the DNS name vault.internal.domain and
IP 192.168.1.10

Replace the CN and SANs (alt_names) with values matching your
deployment.

Working with IP vs Domain Name
Scenario api_addr TLS Cert CN Use Case

IP-based setup
https://192.168.1.10

:8200
CN = IP + SAN

Internal,

dev, no DNS

Domain-based

setup

https://vault.intern

al.domain:8200
CN = FQDN

Internal

with DNS or

hosts file

Make sure:

• The CN or SAN matches the api_addr

• Vault clients connect using the same address configured in
api_addr

215

Step 5: Start Vault with Docker
Here’s the command:

docker run -d --name vault \

 --cap-add=IPC_LOCK \

 -p 8200:8200 \

 -p 8201:8201 \

 -v /opt/vault-prod/config:/vault/config \

 -v /opt/vault-prod/data:/vault/data \

 -v /opt/vault-prod/config/certs:/vault/config/certs

\

 -e VAULT_ADDR='https://0.0.0.0:8200' \

 --restart=always \

 hashicorp/vault:latest server

--cap-add=IPC_LOCK enables memory locking to prevent secrets
from being swapped to disk.

Step 6: Initialize and Unseal
Once running, use a separate terminal to exec into the Vault
container:

docker exec -it vault vault operator init

You’ll get:

• 5 unseal keys

• 1 root token

Save these securely.

Then unseal Vault:

216

docker exec -it vault vault operator unseal <unseal-

key>

Repeat 3 times.

Final Validation
If everything went well, visiting:

https://<<YOUR_IP_OR_FQDN_HERE>>:8200

Should show you the Vault UI.

Security Best Practices
• Never run Vault without TLS

• Remove the root token after bootstrap

• Enforce ACL policies and AppRoles

• Use audit devices (see audit devices chapter)

• Snapshot regularly and secure backups

• Mount data volumes with noexec, nosuid

Recap
Running Vault in production with Docker gives you containerized
control, fast iteration, and repeatability but it’s still a production-
grade security platform. In this chapter, you learned how to:

• Prepare a secure Vault deployment using Docker

• Configure persistent Raft storage

• Secure your deployment with TLS

217

• Understand mlock, data volumes, and IPC

• Handle IP vs domain-based TLS configs

• Initialize, unseal, and talk to Vault

218

Chapter 26: Production
Hardening Guide

Vault is designed to be secure by default, but in production, defaults
alone won’t save you. Hardening your Vault deployment is not just
about compliance, it’s about protecting the most sensitive data in
your entire infrastructure.

This chapter covers everything you need to lock down Vault in
production, including:

• Network security

• TLS and certificates

• Authentication controls

• Audit logging

• OS and file system hardening

• Token and lease management

• Rate limiting

• Recommended configuration flags

1. Use TLS Everywhere
Vault requires TLS in production. This protects the Vault API from
eavesdropping, MITM attacks, and credential theft.

219

Generate and Use Strong Certificates

• Use an internal CA or Vault's PKI engine to generate trusted
certs.

• Avoid self-signed certificates unless Vault is deployed in
complete isolation.

Example (via OpenSSL):

openssl req -x509 -nodes -days 365 \

 -newkey rsa:4096 \

 -keyout vault.key \

 -out vault.crt \

 -subj "/CN=internal.vault.local"

Vault Configuration for TLS

listener "tcp" {

 address = "0.0.0.0:8200"

 tls_cert_file = "/etc/vault/tls/vault.crt"

 tls_key_file = "/etc/vault/tls/vault.key"

}

2. Restrict Network Access
Vault should never be exposed directly to the public internet.

Limit Access via Firewalls or Security Groups

Allow access to Vault only from:

• Internal services that authenticate to Vault

• Admin networks or bastion hosts

220

Recommended ports:

Port Description

8200 Vault API / UI

8201 Cluster communication (Raft)

Block 8200 from all external IPs.

3. Run Vault as a Non-Root User
Vault does not need root privileges to function.

Create a vault user:

useradd --system --home /etc/vault.d --shell

/bin/false vault

Set ownership:

chown -R vault:vault /etc/vault.d /opt/vault

Update your vault.service:

[Service]

User=vault

Group=vault

4. Enable Memory Locking (mlock)
This prevents secrets from being written to disk (via swap).

[Service]

LimitMEMLOCK=infinity

221

Also give the Vault binary permission to lock memory:

setcap cap_ipc_lock=+ep /usr/local/bin/vault

5. Disable the Root Token
The root token should not be used beyond initial bootstrapping.
Revoke it and rely on tightly scoped policies and real authentication
methods.

Use Role-Based Auth Methods

Recommended production methods:

• userpass or LDAP for admins

• AppRole, Kubernetes, or TLS for apps

6. Enable Audit Logging
Audit logs are the only way to track who did what in Vault.

Configure File-Based Audit Log

vault audit enable file

file_path=/var/log/vault_audit.log

Ensure file is owned by vault and not world-readable.

7. Configure Token and Lease Security
Set tight defaults for:

vault.hcl

default_lease_ttl = "1h"

222

max_lease_ttl = "24h"

Set these in your auth methods as well (e.g., AppRole):

vault write auth/approle/role/my-app \

 token_ttl=60m \

 token_max_ttl=2h \

 secret_id_ttl=30m

8. Enable Rate Limiting
Vault can be overwhelmed if a client loops or is misconfigured. Rate
limiting protects Vault from unintentional DoS.

9. Use Integrated Storage with Raft
Avoid file-based or dev backends in production.

Use:

storage "raft" {

 path = "/opt/vault/data"

 node_id = "vault-1"

}

• Highly available

• Supports snapshots

• Secure and robust

10. Harden the Vault via OS
• Use Ubuntu LTS or RHEL Minimal

• Disable unnecessary services (systemctl disable)

223

• Remove compilers, shells, user tools

• Use iptables or ufw to lock ports

• Apply automatic security updates

11. Automate Backups & Snapshots
Set up regular Vault snapshots:

vault operator raft snapshot save /backups/vault-

$(date +%F).snap

Use cron and back them up securely.

12. Enforce Configuration Checks
Vault’s config is plaintext; treat it as sensitive.

Use automated scanners to detect issues:

• Ownership

• Permissions

• TLS enabled

• Token TTL

Recap

Area Recommendation

TLS Always enabled, use valid certs

Network Internal only, restrict 8200/8201

Audit Logs File-based, protected

224

Area Recommendation

Auth Methods Root token disabled, roles used

OS User Vault runs as non-root

mlock Enabled with systemd & setcap

Storage Raft, secured, regularly backed up

Rate Limiting Via proxies or service mesh

Snapshots Scheduled, versioned backups

Trust, but verify. Every auth method, secret engine, and
configuration should be revisited periodically. Secrets don’t expire—
you have to rotate them.

225

Chapter 27: Creating PGP Keys for
Vault Security

 Vault supports advanced cryptographic operations and secure
workflows, especially for unsealing, root token recovery, and secure
key distribution. One of the mechanisms Vault supports in these
workflows is PGP (Pretty Good Privacy) encryption. PGP ensures
that sensitive values (like unseal keys or root tokens) are shared
securely and can only be decrypted by intended recipients. In this
chapter, you'll learn how to generate a secure PGP keypair using the
GnuPG (GPG) tool.

Why PGP is Important in Vault Workflows
HashiCorp Vault supports PGP for:

• Encrypting unseal keys when using Shamir's key sharing.

• Securely delivering the root token during the vault
operator generate-root process.

• Secure automation and scripting, where secrets need to be
shared among team members securely.

When you supply a PGP public key, Vault can encrypt sensitive
information in a way that only the holder of the corresponding
private key can decrypt.

Installing GPG
To work with PGP keys, we use the GPG command-line utility (GNU
Privacy Guard).

226

Step 1: Check if GPG is Installed

gpg --version

If it is not installed, install it with one of the following:

• Ubuntu/Debian:

sudo apt update && sudo apt install gnupg

• macOS (using Homebrew):

brew install gnupg

• For alpine linux:

apk add gnupg

Generating a PGP Keypair

Step 2: Create Your PGP Key

Use the following command to launch the interactive key creation
wizard:

gpg --full-generate-key

You will be prompted to answer several questions:

1. Key type – Choose the default (1) for RSA and RSA.

2. Key size – Choose at least 4096 bits for strong security.

3. Expiration – You can specify a duration (e.g., 1y for one year)
or set it to never expire (0).

227

4. User ID:

• Real name (e.g., Vault Operator)

• Email address (e.g., vault@example.com)

5. Passphrase – Choose a strong, memorable passphrase to
protect the private key.

Example Output

Once the key is created, GPG will display a confirmation and begin
creating the keypair.

228

Listing and Managing PGP Keys

Step 3: View Your Key

gpg --list-keys

This will output something like:

The long string under pub is your key ID (fingerprint).

Exporting the Keys

Step 4: Export Public Key

You’ll use this when configuring Vault commands:

229

gpg --armor --export [YOUR_EMAIL_ADDRESS_HERE] >

public-key.asc

This creates an ASCII-armored file public-key.asc that you can
safely share with Vault.

To view the public key directly:

gpg --armor --export [YOUR_EMAIL_ADDRESS_HERE]

Step 5: Export Private Key (Optional – For Backups
Only)

Only export the private key if you need it for secure backup.

gpg --armor --export-secret-key

[YOUR_EMAIL_ADDRESS_HERE] > private-key.asc

Important: Store the private key securely. It provides access to
everything encrypted with the corresponding public key.

Testing the Keypair
You can quickly test that encryption and decryption work:

Encrypt a Sample Message

echo "Hello Vault!" | gpg --armor --encrypt --

recipient [YOUR_EMAIL_ADDRESS_HERE] > message.asc

Decrypt the Message

gpg --decrypt message.asc

230

Summary
• You created a strong RSA-based PGP key using GPG.

• You exported the public key for use in Vault.

• You optionally exported the private key for backup.

• You verified that encryption and decryption work end to end.

